
HyperText Markup Language

(HTML)

What is HTML?

HTML is the common language for

publishing hypertext on the World Wide

Web. It is a non-proprietary format based

upon SGML.

Can be created and processed by a wide

range of tools, from simple plain text

editors - you type it in from scratch- to

sophisticated WYSIWYG authoring tools.

What is XHTML

The Extensible HyperText Markup Language

(XHTML™) is a family of current and future

document types and modules that reproduce,

subset, and extend HTML, reformulated in XML.

 XHTML Family document types are all XML-

based, and ultimately are designed to work in

conjunction with XML-based user agents.

 XHTML is the successor of HTML.

Markup Languages

SGML:
– Standard Generalized Markup Language

– Mother of Markup Languages

HTML
– Most popular presentation language for web

XML:
– Draws heavily on the merits & shortcomings of HTML

& SGML

Brief History of HTML

 1989 CERN - WWW project proposal

 1992 Laying the foundations

 1993 NCSA Mosaic released, Web takes off

 IETF comes in:
– July '93: Internet Draft for HTML+

– Nov '95: RFC1866 - HTML 2.0

– Nov '95 RFC1867 - Form-based file Upload

– March '95 HTML 3.0 Draft stalls

– May '96 RFC1942 - HTML Tables

– Jan '97 RFC2070 - Internationalization of HTML

– Late '96 IETF HTML WG closes

 World Wide Web Consortium (W3C – www.w3.org) Takes over:
– Fall '95 W3C brings key vendors to negotiating table

– Initial work on common object model: <object>

– Followed by work on raising the baseline for HTML

– Jan '97 W3C releases HTML 3.2 Recommendation

– Dec '97 W3C releases HTML 4.0 Recommendation

– May '98 W3C workshop on Future of HTML

– Feb '99 XHTML 1.0 draft released
– Feb 2004: Modularization of XHTML 1.0 - Second Edition

– April 2004: XHTML-PRINT

http://www.w3.org/

Creating a HTML Page

 Requirements

– Text or HTML Editor

– Graphics editors

– Browser (Netscape, Internet Explorer, Lynx, etc.)

Focus

– Usable and Eye-catching documents

– Images in Web pages

– Animation

HTML Basics

HTML documents contain 4 things
– Text

– Tags

– External Multimedia such as graphics, sound, movies, etc.

– Scripts

Example
– <TAG> Your Text Here </TAG>

– Types, used in pairs, or not in pairs

– Tags can be nested

– Tags have Attributes:

Hi

What are Tags?

Mark text as

– headings, paragraphs

– formatting (physical, logical)

– list

– quotations, etc.

Also for

– creating hyperlinks

– including images, making tables

– fill-in forms, frames

HTML Document Structure

Basic Structure

<HTML>

<HEAD>

<TITLE> KFUPM </TITLE>

</HEAD>

<BODY>

 ….. ….. ……

</BODY>

</HTML>

HTML Document Structure

HTML= head + body

– Body elements contain all the text and other
material to be displayed

Line breaks and indentation exist only for
human readability

Comment
<!-- this is a single-line comment -->

<!--

also multi-line comment

-->

 Example

<HTML>

<HEAD>

<TITLE>head/title</TITLE>

</HEAD>

<BODY> all elements of document

 <H1> Big heading </H1>

 <H6> Small heading </H6>

 <P> a para of text comes here </P>

</BODY>

</HTML>

Markup

 There are four kinds of markup elements in HTML:
– structural markup: that describes the purpose of text (for

example, <h1>Golf</h1> will cause a reader to treat "Golf" as a
first-level heading),

– presentational markup: that describes the visual appearance of
text regardless of its function (for example, boldface will
render boldface text) (Note that presentation markup is deprecated
and is not recommended; authors should use CSS for presentation),

– hypertext markup: that links parts of the document to other
documents (for example, Wikipedia will render the
word Wikipedia), and

– widget elements: that create objects (for example, buttons and
lists).

http://www.wikipedia.org/

Modularising HTML
Designed for easy use in subsetting HTML, the following modules are strictly based upon HTML 4.0.

 Applet — applet, param

 Block phrasal — address, blockquote, pre, h1-h6

 Block presentational — center, hr

 Block structural — div, p

 Inline phrasal — abbr, acronym, cite, code, dfn, em, kbd, q, samp, strong, var

 Inline presentational — b, basefont, big, font, i, s, small, strike, sub, sup, tt, u

 Inline structural — bdo, br, del, ins, span

 Linking — a, base, link

 Lists — dir, dl, dt, dd, ol, ul, li, menu

 Simple forms — form, input, select, option, textarea

 Extended forms — button, fieldset, label, legend, optgroup, option, select, textarea

 Simple tables — table, td, th, tr

 Extended tables — caption, col, colgroup, tbody, tfoot, thead

 Images — img

 Image maps — area, map

 Objects — object, param

 Frames — frameset, frame, iframe, noframes

 Events — onclick, ondblclick, onmousedown, onmouseup, onmouseover, onmousemove, onmouseout, onkeypress,
onkeydown, onkeyup

 Metadata — meta, title

 Scripts — noscript, script

 Styles — style element and attribute

 Structure — html, head, body

Applet

Use <applet></applet> tag to include

applets in your HTML document

Attribute:

– Name: applet name for scripting

– Code: the name of the main class file that starts

and runs the applet

– Archive: classes can be compressed and

archived in .zip format

Java Applet inclusion

Compile the Java code (e.g., use javac)

– example: javac Blinker

Creates file with extension .class,

– example Blinker.class

Use the tags <APPLET> … </APPLET>

Specify parameters such as speed, color (for

background and text, etc.)

Block Phrasal

Tags used for phrasing blocks of text like

headers:

– <h1></h1>, <h2>, …, <h6>.

– <blockquote>: used for including quotations to

text, used in a “reply” message in outlook

express and other email clients that allow you

to quote the sender when you reply.

Block Presentational

Tags used for representing blocks of hypertext:

– <center>: to position a certain block in the middle of

the web page

– <hr>: horizontal ruler, splits the webpage by a graphical

horizontal ruler, has no closing tag, includes attributes:

• color: presented in hexadecimal code or name, like

color=“#FFFFFF” or color=“white”.

• width

• noshade

• align

Block Structural

Structures blocks into layers and paragraphs, like

<p> for a paragraph:

<p></p>: will automatically format a new

paragraph, thus leaving an empty line before it.

– If you don’t want a new paragraph, just want a new

line, use
 (called line break, has no closing tag)

– Has attributes like “Align” to align the text in the

paragraph

Inline Presentational

 Present text

– bold or use

– <BIG> …. </BIG>

– _{Makes text subscripts}

– <TT> emphasized text </TT>

– <I> text in italics </I> or use

Linking (A, LINK, BASE)

 To make a hyper link we use “anchor” signified by the tag <a>

 <link> and <base> are used to link the HTML document to another
reference HTML file, used in the <head> section of the document

 Anchors: have attribues:
– href: the page or Internet Service you want to link to

– hreflang: the encoding language used at the target document, used as
advisory to help the browser prepare itself for new encoding

– name: to link within the document, encouraged in XHTML 1.0, called a
Named Anchor

– target: where to open the new page
• _top:

• _parent:

• _blank:

• _self:

• or name of frame

Values for TARGET attribute

 _blank: The user agent (i.e. Internet browser) should load
the designated document in a new, unnamed window.

 _self: The user agent should load the document in the same
frame as the element that refers to this target.

 _parent: The user agent should load the document into the
immediate FRAMESET parent of the current frame. This
value is equivalent to _self if the current frame has no
parent.

 _top: The user agent should load the document into the
full, original window (thus canceling all other frames).
This value is equivalent to _self if the current frame has no
parent

Linking with <base>

 No closing tag

 Attribute:
– href : This attribute specifies an absolute URL that acts as the base URL for resolving relative URLs.

– target: target frame information

 In HTML, links and references to external images, applets, form-processing programs, style sheets,
etc. are always specified by a URL. Relative URLs are resolved according to a base URL, which may
come from a variety of sources. The BASE element allows authors to specify a document's base URL
explicitly.

 When present, the BASE element must appear in the HEAD section of an HTML document, before
any element that refers to an external source. The path information specified by the BASE element
only affects URLs in the document where the element appears.

 For example, given the following <base>declaration and <a> declaration:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">

<HTML>

 <HEAD>

 <TITLE>Our Products</TITLE>

 <BASE href="http://www.aviary.com/products/intro.html">

 </HEAD>

 <BODY>

 <P>Have you seen our Bird Cages?

 <P>What about our Birds?

 </BODY> </HTML>

 the relative URL "../cages/birds.gif" would resolve to: http://www.aviary.com/cages/birds.gif

and the relative URL “birds.jpg" would resolve to: http://www.aviary.com/products/bird.jpg

Lists

 To generate menus or lists we use
– <menu> and

– or and (preferred)

– Example:

DB-9

DB-12

DB-25

 This example will generate an unordered list of items, for ordered lists use
 instead of

 One important attribute is type {circle, disc or square} which is used to specify
the type of bullet you want to use. This attribute has been deprecated in HTML
4 in favor of the list-style-type style sheet attribute.

 or you can use your own bullet by using list-style-image style sheet attribute

Tables

 These are tags used to generate and manipulate tables, rows and columns.

 Use <table></table> to create a table

 Use <tr></tr> to format rows inside tables and <td></td> for cells in the rows

 Indentation in HTML document is encouraged especially when it comes to
tables, example:

<table>
<tr>

<td>column1,row1</td>

<td>column2,row1</td>

</tr>

<tr>
<td>column1,row2</td>

<td>column2,row2</td>

</tr>

</table>

Tables – cont’d

Attributes:

– background: specifies an image file used as backdrop to
the table

– bgcolor: specifies background color of the table

– border: specifies the thickness in pixels of the table
border, the browser will render it as a 3D border

– cellspacing: specifies space size between cells in the
table

– width and height: specify dimensions of the table other
than the defaults given by the browser.

Images

 Use the tag to include images (or animated GIFs) in
your HTML document (no closing tag), example:

 Attributes:

– src: the source file of the image

– width and height: specify the dimensions of the image, you might
want to display it in different dimensions like thumbnails.

– border: border thickness in pixels around the image

– usemap: to specify name of the image map associated with this
image, ex. usemap=“#navigation”

– alt: alternate text that will appear when the user points at the image
with the mouse

Some notes on Images

Loading of images is made faster by telling the

browser the size of the image

Size is specified in pixels

You can link by using images

– Can have pictures with no borders

You can use thumbnail images to link to larger

images

Making clickable images (image maps)

Image Maps

Enable users to click on parts of images (e.g., click

on a state or country in a map)

HTML tag used is <map></map> and <area> is

used to specify what are the clickable areas

(hotspots) in an image map

 areas have default shapes of a rectangle, a circle or

a polygon

Attributes for <map>:

– name: specifies name of image map to be referenced in

the tag

Image Maps – cont’d

 Attributes for <area>:
– href: what link should the browser follow when user clicks on this area

– shape: shape of area
• circle

• rectangle

• poly or polygon

– target: where the target site should open
• _top

• _parent

• _blank

• _self

• or name of frame

– coords: specifies coordinates of area

 It is advised that you use a special software tool to generate image
maps and areas, especially when it comes to computing coordinates

Image Maps – cont’d

Example:

<img scr=“images\logo.gif” alt=“scroll to the bottom for navigation links” height=“300” width=“250”

usemap=“#navigation” >

<map name=“navigation”>

<area shape=“rect” coords=“0,0,100,100” href=“products.html”>

<area shape=“rect” coords=“0,100,300,100” href=“support.html”>

</map>

Objects

Use the tag <object></object> to include any
external objects to your HTML document, like
flash files, video files, sound files…etc.

An important attribute is classid which is used to
direct the browser to load the program, an applet
or a plugin class file.

You must obtain the classid value from a supplier
of an ActiveX control

Another tag used with object inclusion is <param>
(no closing tag) which is used to pass parameters
to the object is needed

Objects - example

<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=6,0,29,
0" width="570" height="75">

 <param name="movie" value="file:///C|/Inetpub/wwwroot/flash/Movie1.swf">

 <param name="quality" value="high">

 <embed src="file:///C|/Inetpub/wwwroot/flash/Movie1.swf" quality="high"
pluginspage="http://www.macromedia.com/go/getflashplayer" type="application/x-shockwave-
flash" width="570" height="75"></embed>

</object>

Events

Events are scripts that will be executed

when a certain event takes place, like:

onMouseOver, onClick, onLoad

Events are used inside tags, just like

attributes
e.g., <body onLoad=“document.form1.field1.focus()”>….</body>

Scripts

To include scripts inside an HTML document, we
use the tag <script></script>

Attributes:

– language: sets the scripting language you want to use in
writing the script, like c#, javascript, vb, php, jscript,
vbscript

– source: import script writing in another document like a
.js file or another website by specifying the URL

– type: an advisory about the MIME-content type of the
script, to tell the browser what scripting engine to use.

Scripts - example

<script language="javascript" type="text/javascript">

function wrong_pass() {

alert("please enter correct password!");

}

</script>

Scripts – cont’d

 Some browsers don’t support scripting and cannot render scripts, in
this case you might want to inform the user that this page contains
scripts and it will not work on this browser, for this we use the tag
<noscript></noscript>

e.g.,
<noscript>

This document contains programming that requires a scriptable browser, such as
Microsoft Internet Explorer or Netscape Navigator. You may not have full
access to this page’s power at this time.

</noscript>

This message will appear to the user if the browser does not support
scripting, but it will not appear if the browser does support scripting.

Frames

Frames split the webpage into different regions for
more clarity and accessibility to the user.

To make frames first we must define a frameset
using the tag <framset> </framset>

Using this tag (element) we can specify how many
frames we want and what is the layout of these
frames

Then we define the properties of every frame
using the <frame> tag (no closing tag) nested
inside the <frameset>

<frameset> attributes

 border: a 3-D border is displayed by default, to
change the size of this border use this attribute

 cols: defines the number and sizes or proportions
of column arrangement of frames in the frameset,
you can use absolute pixel size or use percentage,
but the total percentage must sum up to 100%, like
cols=“25%,50%,25%”, you can also use wildcard
asterisk (*)

 rows: like cols, but used for row arrangements.

 frameborder: a boolean value indicating whether
you want a divider between frames or not

<frame> attributes

 frameborder: a boolean value indicating whether you want
a divider (border) for the frame or not, overrides
frameborder attribute in <frameset> tag

 name: the name of a frame will be used to reference to it,
especially when you want to open a URL in a specific
frame.

 noresize: the user will not be able to move the divider of
the frame or resize it

 scrolling: boolean value of whether you want a scroll bar
for the frame or not, can be “yes”| ”no”| ”auto”

 src: what URL or HTML page will displayed in this frame

Frames - example

 We want to make a set of 3 frames, one header for company logo, one
menu on the left and one main frame as body to the right

 We want the header to cover over the menu and the body

<frameset rows="16%,*" cols="*" frameborder="NO" border="0"

framespacing="0">

 <frame src="header.htm" name="topFrame" scrolling="NO" noresize >

 <frameset cols="17%,*" frameborder="NO" border="0" framespacing="0">

 <frame src="menu.html" name="leftFrame" scrolling="NO" noresize>

 <frame src=“body.asp" name="MainFrame">

 </frameset>

</frameset>

<noframes>Your browser does not support frames.
To view this website, you
will need a different browser</noframes>

Note on Frames

 Frames should be defined before the <body></body> part of the HTML
document

 Usually:

<html>

<head>

…

</head>

<frameset…>

 <frame…\>

</frameset>

<body>

…..

</body>

</html>

Separation of content and Style in

HTML
 Efforts of the web development community have led to a

new thinking in the way a web document should be
written; XHTML epitomizes this effort.

 Standards stress using markup which suggests the structure
of the document, like headings, paragraphs, block quoted
text, and tables, instead of using markup which is written
for visual purposes only, like , (bold), and <i>
(italics).

 Such presentational code has been removed from the
HTML 4.01 Strict and XHTML specifications in favor of
CSS solutions. CSS provides a way to separate the HTML
structure from the content's presentation

Document Type Definition (DTD)

All HTML documents should start with a
Document Type Definition (or DTD) declaration.
For example:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
This defines a document that conforms to the Strict DTD of HTML 4.01,

which is purely structural, leaving formatting to Cascading Style Sheets.

Other DTDs, including Loose, Transitional, and
Frameset, define different rules for the use of the
language.

http://www.w3.org/TR/html4/strict.dtd

Styles

 Styles are assigned to different HTML elements using the
style attribute, which applies to mostly all HTML tags

 You are discouraged from writing a style for every
element.

 Instead you are encouraged to create a separate cascading
style sheet file (.css) and linking your HTML document to
this file using the <link> tag in the header of the HTML
file, e.g., <link href=“mystylesheet.css" rel="stylesheet" type="text/css">

 Then you can apply the style to any HTML element by
simply referring to it using the class attribute

 This is very versatile and makes it very easy for the
developer in case you want to apply the same style to
different elements in the web page

Cascading Style Sheets

A style must be defined using

<style></style> tag

You can use this tag and define as many

styles as you want and put them all in a

single file and save it as .css, this will be a

cascading style sheet, to which you can link

from within your HTML document.

CSS

Style sheets in CSS are made up of rules, a

rule has 3 parts:

– Selector: where you want to apply the rule

– Property: what property you want to affect

– Value: what is the value you want for this

property

e.g., font { color:#d8da3d }

CSS – grouping properties

You can put more than one property in a rule, but

you have to separate them by semi-colon:

e.g., font {color:#d8da3d; text-decoration:underline}

or

font

{color:#d8da3d;

 text-decoration:underline

}

CSS – grouping selectors

You can also put more than one selector for
the same style. Separate them by comma.

Example:

Font, p, body

{color:#d8da3d;

 text-decoration:underline

}

Class Selectors

Define your own classes and apply them to

HTML elements in your HTML document.

Example:

In CSS:

.warningFont { color: red;}

In HTML:

<p class=“warningFont”>Invalid Password</p>

Comments

You can add comments in your style sheets

using /*…..*/

Contextual Selectors

Contextual selectors are merely strings of two or
more simple selectors separated by white space.
These selectors can be assigned normal properties
and, due to the rules of cascading order, they will
take precedence over simple selectors. For
example, the contextual selector in:

P EM { background: yellow }

is P EM. This rule says that emphasized text within a
paragraph should have a yellow background;
emphasized text in a heading <h1> would be unaffected

Pseudo-classes in CSS

 Pseudoclasses are subclasses added to the property of a
style to distinguish different cases of the property

 Like a link <a>, we can set a different style for a link when
it is visited or active or when the mouse hovers over it

 Exmaple, the anchor pseudoclass:

<style type=“text/css”>

a {color:#000000}

a:visited {color:#0000ff}

a:active {color:#000fff}

a:hover {color:#ff0000; text-decoraction:none}

</style>

Pseudo-elements

 Pseudo-elements include:
– First line pseudo-element, and

– First letter pseudo-element.

 Example:
P:first-line {

 font-variant: small-caps;

 font-weight: bold

}

P:first-letter {

 font-size: 300%;

 float: left

}

CSS – cont’d

 Using style sheets you can pre-assign the properties of an HTML tag
(like in the example before) or create new classes of style.

 Later in your HTML file you can reference these classes in the class
attribute of a certain tag to apply the selected style.

 Example

<style type=“text\css”>
.main_table {background-color: #CC3366}

.nav_table {background-color: #FFFF66}

</style>

….inside HTML:

<table class=“main_table”>….</table>

…

Forms
 What are they used for

– Surveys

– Collect addresses of visitors to your Homepage

– Allow people to register for something

 Features
– Submitted by mail

– Security (Passwords)

– Checkboxes and Radio buttons

– Area for Text and Comments

 Require an application environment like ASP, PHP, JSP, CGI or
ColdFusion on the server-side to process data coming from the
form submission

Forms – cont’d

 To make a form you must first use the <form></form> tag
and then enclose all the form elements inside the form
block

 Attributes:
– action: specifies the URL to be accessed when the form is

submitted, usually it is a file which contains ASP or CGI scripts to
process the input data

– autocomplete: boolean value to enable form auto-complete feature
provided by some browsers. Must be accompanied with vcard-
name attribute in the type input elements of the form

– name: specifies form name to be referenced

– method: can be either “GET” or “POST”, specifies how the input
data will be passed to the file specified in action attribute

• GET: appends the data to the action URL in what is referred to as
Query String

• POST: data will be sent as transaction message body, i.e., will not
appear to the user in the URL

Form Controls

These are elements of a form used to gather
user input.

The mostly used and mostly important
control is the <input> element (no closing
tag)

Using this tag you can define different input
types by manipulating the type attribute of
this element.

<input>

 Attributes:
– Name: name of this control to be referred to later

– Checked: indicates if the control should appear checked or not when the page loads (for check
boxes)

– Disabled: a disabled control element cannot receive focus and cannot be activated by the user
(will appear grayed out on the screen), like an inactive button

– Maxlength: the maximum number of characters a user is allowed to enter into a certain text
field

– Readonly: a text field marked as readonly cannot be edited by user, although scripts can
modify the content.

– Size: the width of a text field, you are encouraged to use CSS to specify widths of text fields
and buttons

– Src: the location of the image if the control element is of image type

– Value: pre-assigns a value to an input element, important for drop down menus, jump menus
and checkboxes. Applies to:

• Button

• Checkbox

• Hidden

• Radio

• Submit

<input> - cont’d

The most important attribute is:
– type: an input control field can be:

• Button: submit, reset, none (must use onClick event)

• Checkbox:can be on or off

• File: must use enctype="multipart/form-data“ attribute inside the
<input> tag

• Hidden: a hidden text field to carry some data, treat like a variable

• Image: graphical button

• Password: a text field but will present asterisks instead of chatacters

• Radio: a radio button, on\off

• Reset: clear button, will return all values to defaults

• Submit: submits the form data and calls the action attribute

• Text: an input text field

• Label: output text

Multi-Line Input

Use <textarea></textarea>

Can be used to input multi-line or output

multi-line like notes

Example
<textarea rows="5" cols="50" name="notes">use this area

for extra notes</textarea>

List \ Drop-down menu

 This is a list that allows multiple selections, and will display only 2
lines of data:

<select name="majors" size="2" multiple>

 <option value="1">COE</option>

 <option value="2“>ICS</option>

 <option value="3">SE</option>

 <option value="4">MIS</option>

</select>

 To make it a dropdown menu remove the size and multiple attributes

 Use the attribute selected with the <option> tag to pre-select an item
from the list/menu

Finally…

 Issues with HTML:
Merits:

– Very easy to use & learn

– Presentation technology

– It is the most popular

Shortcomings:

– NOT a data technology

– Poor Searching

– There is no Intelligence of content/data

– We loose meaning association with content

– Data cannot be represented hierarchically

– Limited set of tags

Challenges facing HTML

Prevalence of sloppy markup practices

New kinds of browsers: Digital TVs,
handhelds, phones and cars

Pressure to subset HTML for simple clients

Pressure to extend HTML for richer clients

Combining HTML with other tag sets:
Math, Vector Graphics, E-commerce,
Metadata, ...

XHTML

 XHTML: The Extensible Hypertext Markup Language

 A reformulation of HTML in XML with namespaces for
HTML 4.0 strict, transitional and frameset DTDs

 Modularises HTML for subsetting/combining with other
tag-sets

 Document Profiles provide basis for interoperability
guarantees

 Next generation forms features offering improved match to
database and workflow applications

HTML vs. XHTML

 Whereas HTML was an application of SGML, a very flexible markup
language, XHTML is an application of XML, a more restrictive subset of
SGML

 The changes from HTML to transitional XHTML are minor, and are mainly to
increase conformance with XML.

 The most important change is the requirement that all tags be well-formed.

 XHTML uses lower-case for tags and attributes: This is in direct contrast to
established traditions which began around the time of HTML 2.0, when most
people preferred uppercase tags.

 In XHTML, all attributes, even numerical ones, must be quoted. (This was
mandatory in HTML as well, but often ignored.)

 All elements must also be closed, including empty elements such as img and
br. This can be done by adding a closing slash to the start tag: and

.

 Attribute minimization (e.g., <option selected>) is also prohibited.

XML

 HTML was created as an application of SGML - the Standard
Generalized Markup Language (ISO 8879:1986)

 XML is a descendant of SGML, which is easier to implement

 XML requires you to:
– make tags case-sensitive

– include end tags e.g. </p> and

– add a / to empty tags, e.g.
 and <hr />

– quote all attribute values, e.g.

 These make it practical to parse well-formed XML without apriori
knowledge of the tags

 Old browsers can render XHTML 1.0 provided you follow simple
guidelines

The instructor has provided an introduction and tutorial on XML in the
“presentations” section of the website on WebCT

References

 W3C HTML Homepage

http://www.w3.org/MarkUp/

 XHTML: The Extensible Hypertext Markup Language by Dave
Raggett, at W3C LA event in Stockholm, 24 March 1999

http://www.w3.org/Talks/1999/03/24-stockholm-xhtml/

 “HTML 4.01 Specification”, W3C Recommendation 24 December
1999

http://www.w3.org/TR/html4/

 W3C CSS Homepage
http://www.w3.org/Style/CSS/

 O’Reilly HTML Reference

http://www.w3.org/MarkUp/
http://www.w3.org/Talks/1999/03/24-stockholm-xhtml/
http://www.w3.org/Talks/1999/03/24-stockholm-xhtml/
http://www.w3.org/Talks/1999/03/24-stockholm-xhtml/
http://www.w3.org/Talks/1999/03/24-stockholm-xhtml/
http://www.w3.org/Talks/1999/03/24-stockholm-xhtml/
http://www.w3.org/TR/html4/
http://www.w3.org/Style/CSS/

