
Course Name:
Database Management
Systems

Lecture 25
Topics to be covered

 Recovery System

 Failure Classification

 Storage Structure

 Recovery and Atomicity

 Log-Based Recovery

 Shadow Paging

 Recovery With Concurrent Transactions

 Buffer Management

 Failure with Loss of Nonvolatile Storage

 Advanced Recovery Techniques

 ARIES Recovery Algorithm

 Remote Backup Systems

2

Failure Classification
 Transaction failure :

 Logical errors: transaction cannot complete due to some
internal error condition

 System errors: the database system must terminate an
active transaction due to an error condition (e.g.,
deadlock)

 System crash: a power failure or other hardware or
software failure causes the system to crash.

 Fail-stop assumption: non-volatile storage contents are
assumed to not be corrupted by system crash

 Database systems have numerous integrity checks to prevent
corruption of disk data

 Disk failure: a head crash or similar disk failure destroys all
or part of disk storage

 Destruction is assumed to be detectable: disk drives use
checksums to detect failures

Recovery Algorithms

 Recovery algorithms are techniques to ensure database
consistency and transaction atomicity and durability
despite failures

 Focus of this chapter

 Recovery algorithms have two parts

1. Actions taken during normal transaction processing
to ensure enough information exists to recover from
failures

2. Actions taken after a failure to recover the database
contents to a state that ensures atomicity,
consistency and durability

Storage Structure
 Volatile storage:

 does not survive system crashes

 examples: main memory, cache memory

 Nonvolatile storage:

 survives system crashes

 examples: disk, tape, flash memory,
 non-volatile (battery backed up) RAM

 Stable storage:

 a mythical form of storage that survives all failures

 approximated by maintaining multiple copies on distinct
nonvolatile media

Stable-Storage Implementation
Maintain multiple copies of each block on separate disks

 copies can be at remote sites to protect against disasters
such as fire or flooding.

Failure during data transfer can still result in inconsistent
copies: Block transfer can result in

 Successful completion

 Partial failure: destination block has incorrect information

 Total failure: destination block was never updated

Protecting storage media from failure during data transfer
(one solution):

 Execute output operation as follows (assuming two copies
of each block):

1. Write the information onto the first physical block.

2. When the first write successfully completes, write the same
information onto the second physical block.

3. The output is completed only after the second write successfully
completes.

Stable-Storage Implementation
(Cont.)

 Protecting storage media from failure during data transfer (cont.):

 Copies of a block may differ due to failure during output operation.
To recover from failure:

1. First find inconsistent blocks:

1. Expensive solution: Compare the two copies of every disk block.

2. Better solution:

 Record in-progress disk writes on non-volatile storage
(Non-volatile RAM or special area of disk).

 Use this information during recovery to find blocks that
may be inconsistent, and only compare copies of these.

 Used in hardware RAID systems

2. If either copy of an inconsistent block is detected to have an
error (bad checksum), overwrite it by the other copy. If both
have no error, but are different, overwrite the second block by
the first block.

Data Access
 Physical blocks are those blocks residing on the disk.

 Buffer blocks are the blocks residing temporarily in main
memory.

 Block movements between disk and main memory are
initiated through the following two operations:

 input(B) transfers the physical block B to main memory.

 output(B) transfers the buffer block B to the disk, and
replaces the appropriate physical block there.

 Each transaction Ti has its private work-area in which local
copies of all data items accessed and updated by it are kept.

 Ti's local copy of a data item X is called xi.

 We assume, for simplicity, that each data item fits in, and is
stored inside, a single block.

Example of Data Access

X

Y

A

B

x1

y1

buffer

Buffer Block A

Buffer Block B

input(A)

output(B)

read(X)

write(Y)

disk

work area

of T1

work area

of T2

memory

x2

Recovery and Atomicity

 Modifying the database without ensuring that the transaction
will commit may leave the database in an inconsistent state.

 Consider transaction Ti that transfers $50 from account A to
account B; goal is either to perform all database modifications
made by Ti or none at all.

 Several output operations may be required for Ti (to output A
and B). A failure may occur after one of these modifications
have been made but before all of them are made.

Recovery and Atomicity (Cont.)

 To ensure atomicity despite failures, we first output
information describing the modifications to stable
storage without modifying the database itself.

 We study two approaches:

 log-based recovery, and

 shadow-paging

 We assume (initially) that transactions run serially, that
is, one after the other.

Log-Based Recovery
A log is kept on stable storage.

The log is a sequence of log records, and maintains a record of
update activities on the database.

When transaction Ti starts, it registers itself by writing a
 <Ti start>log record

Before Ti executes write(X), a log record <Ti, X, V1, V2> is
written, where V1 is the value of X before the write, and V2 is the
value to be written to X.

Log record notes that Ti has performed a write on data item Xj
Xj had value V1 before the write, and will have value V2 after the
write.

When Ti finishes it last statement, the log record <Ti commit> is
written.

We assume for now that log records are written directly to stable
storage (that is, they are not buffered)

Two approaches using logs

Deferred database modification

Immediate database modification

Checkpoints

 Problems in recovery procedure

 searching the entire log is time-consuming

1. we might unnecessarily redo transactions which have
already

2. output their updates to the database.

 Streamline recovery procedure by periodically performing
checkpointing

1. Output all log records currently residing in main memory
onto stable storage.

2. Output all modified buffer blocks to the disk.

3. Write a log record < checkpoint> onto stable storage.

Checkpoints (Cont.)

 During recovery we need to consider only the most recent
transaction Ti that started before the checkpoint, and
transactions that started after Ti.

1. Scan backwards from end of log to find the most recent
<checkpoint> record

2. Continue scanning backwards till a record <Ti start> is
found.

3. Need only consider the part of log following above start
record. Earlier part of log can be ignored during recovery,
and can be erased whenever desired.

4. For all transactions (starting from Ti or later) with no <Ti
commit>, execute undo(Ti). (Done only in case of
immediate modification.)

5. Scanning forward in the log, for all transactions starting
 from Ti or later with a <Ti commit>, execute redo(Ti).

Example of Checkpoints

 T1 can be ignored (updates already output to disk due to
checkpoint)

 T2 and T3 redone.

 T4 undone

Tc Tf

T1

T2

T3

T4

checkpoint system failure

