
Course Name:
Database Management
Systems

Lecture 24
Topics to be covered

 Parallel and Distributed Databases

 Introduction

 Centralized and Client-Server Systems

 Parallel Systems

 Distributed Systems

 Applications

 Scope of Research

2

Introduction
Centralized Systems

Run on a single computer system and do not interact with
other computer systems.

General-purpose computer system: one to a few CPUs and a
number of device controllers that are connected through a
common bus that provides access to shared memory.

Single-user system (e.g., personal computer or workstation):
desk-top unit, single user, usually has only one CPU and one
or two hard disks; the OS may support only one user.

Multi-user system: more disks, more memory, multiple CPUs,
and a multi-user OS. Serve a large number of users who are
connected to the system vie terminals. Often called server
systems.

A Centralized Computer System

Client-Server Systems

 Server systems satisfy requests generated at m client systems,
whose general structure is shown below:

Client-Server Systems (Cont.)
 Database functionality can be divided into:

 Back-end: manages access structures, query evaluation and
optimization, concurrency control and recovery.

 Front-end: consists of tools such as forms, report-writers, and
graphical user interface facilities.

 The interface between the front-end and the back-end is through
SQL or through an application program interface.

Client-Server Systems (Cont.)

 Advantages of replacing mainframes with networks of
workstations or personal computers connected to back-end
server machines:

 better functionality for the cost

 flexibility in locating resources and expanding facilities

 better user interfaces

 easier maintenance

Parallel Systems
 Parallel database systems consist of multiple processors and

multiple disks connected by a fast interconnection network.

 A coarse-grain parallel machine consists of a small number
of powerful processors

 A massively parallel or fine grain parallel machine
utilizes thousands of smaller processors.

 Two main performance measures:

 throughput --- the number of tasks that can be completed in a
given time interval

 response time --- the amount of time it takes to complete a
single task from the time it is submitted

Speed-Up and Scale-Up

Speedup: a fixed-sized problem executing on a small
system is given to a system which is N-times larger.

Measured by:

speedup = small system elapsed time

 large system elapsed time

Speedup is linear if equation equals N.

Scaleup: increase the size of both the problem and the
system

N-times larger system used to perform N-times larger job

Measured by:

scaleup = small system small problem elapsed time

 big system big problem elapsed time

Scale up is linear if equation equals 1.

Speedup

Speedup

Scaleup

Scaleup

Factors Limiting Speedup and Scaleup

Speedup and scaleup are often sublinear due to:

 Startup costs: Cost of starting up multiple processes may
dominate computation time, if the degree of parallelism is
high.

 Interference: Processes accessing shared resources
(e.g.,system bus, disks, or locks) compete with each other,
thus spending time waiting on other processes, rather than
performing useful work.

 Skew: Increasing the degree of parallelism increases the
variance in service times of parallely executing tasks. Overall
execution time determined by slowest of parallely executing
tasks.

Parallel Database Architectures

 Shared memory -- processors share a common memory

 Shared disk -- processors share a common disk

 Shared nothing -- processors share neither a common
memory nor common disk

 Hierarchical -- hybrid of the above architectures

Parallel Database Architectures

Shared Memory

 Processors and disks have access to a common memory,
typically via a bus or through an interconnection network.

 Extremely efficient communication between processors —
data in shared memory can be accessed by any processor
without having to move it using software.

 Downside – architecture is not scalable beyond 32 or 64
processors since the bus or the interconnection network
becomes a bottleneck

 Widely used for lower degrees of parallelism (4 to 8).

Shared Disk

All processors can directly access all disks via an
interconnection network, but the processors have private
memories.

The memory bus is not a bottleneck

Architecture provides a degree of fault-tolerance — if a processor
fails, the other processors can take over its tasks since the database
is resident on disks that are accessible from all processors.

Examples: IBM Sysplex and DEC clusters (now part of
Compaq) running Rdb (now Oracle Rdb) were early commercial
users

Downside: bottleneck now occurs at interconnection to the
disk subsystem.

Shared-disk systems can scale to a somewhat larger number
of processors, but communication between processors is
slower.

Shared Nothing
Node consists of a processor, memory, and one or more

disks. Processors at one node communicate with another
processor at another node using an interconnection network.
A node functions as the server for the data on the disk or
disks the node owns.

Examples: Teradata, Tandem, Oracle-n CUBE

Data accessed from local disks (and local memory accesses)
do not pass through interconnection network, thereby
minimizing the interference of resource sharing.

Shared-nothing multiprocessors can be scaled up to
thousands of processors without interference.

Main drawback: cost of communication and non-local disk
access; sending data involves software interaction at both
ends.

Hierarchical
Combines characteristics of shared-memory, shared-disk,

and shared-nothing architectures.

Top level is a shared-nothing architecture – nodes connected
by an interconnection network, and do not share disks or
memory with each other.

Each node of the system could be a shared-memory system
with a few processors.

Alternatively, each node could be a shared-disk system, and
each of the systems sharing a set of disks could be a shared-
memory system.

Reduce the complexity of programming such systems by
distributed virtual-memory architectures

Also called non-uniform memory architecture (NUMA)

Distributed Systems

 Data spread over multiple machines (also referred to as sites
or nodes).

 Network interconnects the machines

 Data shared by users on multiple machines

Distributed Databases

Homogeneous distributed databases

Same software/schema on all sites, data may be partitioned
among sites

Goal: provide a view of a single database, hiding details of
distribution

Heterogeneous distributed databases

Different software/schema on different sites

Goal: integrate existing databases to provide useful functionality

Differentiate between local and global transactions

A local transaction accesses data in the single site at which the
transaction was initiated.

A global transaction either accesses data in a site different from
the one at which the transaction was initiated or accesses data in
several different sites.

Trade-offs in Distributed Systems
 Sharing data – users at one site able to access the data

residing at some other sites.

 Autonomy – each site is able to retain a degree of control
over data stored locally.

 Higher system availability through redundancy — data can be
replicated at remote sites, and system can function even if a
site fails.

 Disadvantage: added complexity required to ensure proper
coordination among sites.

 Software development cost.

 Greater potential for bugs.

 Increased processing overhead.

Applications

The use of parallel database systems to deliver high performance has become

quite common. Although queries submitted to these database systems are

executed in parallel, the interaction between applications and current parallel

database systems is serial.

 As the complexity of the applications and the amount of data they access

increases, the need to parallelize applications also increases. In this parallel

application environment, a serial interface to the database could become the

bottleneck in the performance of the application. Hence, parallel database

systems should support interfaces that allow the applications to interact with the

database system in parallel.

parallel database technology can contribute to make large and scalable

document management systems work.

Scope of research

•Mobile, Service, P2P, grid and cloud computing for managing data and processes

•Managing Heterogeneity and Autonomy in Distributed Systems

•Semantic interoperability and integration (matching, mapping)

•Linked Data, Open Data, Mobile Data, Streaming Data, Sensor Data, Multimedia

and Multimodal Data

•Metadata, Knowledge Bases, Ontologies

•Web scale data management

•Relational, Object-Oriented, XML, Graph, RDF, Event data management

