
Course Name:
Database Management
Systems

Lecture 23
Topics to be covered

 Concurrency Control

 Introduction

Concurrency Control vs. Serializability Tests

Weak Levels of Consistency

Transaction Definition in SQL

Locking Schemes

Applications

Scope of Research

2

Introduction
 A database must provide a mechanism that will ensure that all

possible schedules are

 either conflict or view serializable, and

 are recoverable and preferably cascadeless

 A policy in which only one transaction can execute at a time
generates serial schedules, but provides a poor degree of
concurrency

 Are serial schedules recoverable/cascadeless?

 Testing a schedule for serializability after it has executed is a
little too late!

 Goal – to develop concurrency control protocols that will assure
serializability.

Concurrency Control vs. Serializability Tests

Concurrency-control protocols allow concurrent schedules,
but ensure that the schedules are conflict/view serializable,
and are recoverable and cascadeless .

Concurrency control protocols generally do not examine the
precedence graph as it is being created

Instead a protocol imposes a discipline that avoids nonseralizable
schedules.

We study such protocols in Chapter 16.

Different concurrency control protocols provide different
tradeoffs between the amount of concurrency they allow
and the amount of overhead that they incur.

Tests for serializability help us understand why a
concurrency control protocol is correct.

Weak Levels of Consistency

Some applications are willing to live with weak levels of
consistency, allowing schedules that are not serializable

E.g. a read-only transaction that wants to get an approximate
total balance of all accounts

E.g. database statistics computed for query optimization can
be approximate (why?)

Such transactions need not be serializable with respect to
other transactions

Tradeoff accuracy for performance

Transaction Definition in SQL
Data manipulation language must include a construct for

specifying the set of actions that comprise a transaction.

In SQL, a transaction begins implicitly.

A transaction in SQL ends by:

Commit work commits current transaction and begins a new
one.

Rollback work causes current transaction to abort.

In almost all database systems, by default, every SQL
statement also commits implicitly if it executes
successfully

Implicit commit can be turned off by a database directive

E.g. in JDBC, connection.setAutoCommit(false);

Implementation of Isolation
Schedules must be conflict or view serializable, and

recoverable, for the sake of database consistency, and
preferably cascadeless.

A policy in which only one transaction can execute at a
time generates serial schedules, but provides a poor
degree of concurrency.

Concurrency-control schemes tradeoff between the
amount of concurrency they allow and the amount of
overhead that they incur.

Some schemes allow only conflict-serializable schedules to
be generated, while others allow view-serializable
schedules that are not conflict-serializable.

Locking Scheme

 A lock is available associated with each data item in the
database. Manipulating the values of a lock is called locking.
Locking the items being used by a transaction can prevent
other concurrently running transaction from using these
locked items. The locking is done by a sub system of the
database management system called lock manager.

Exclusive Lock

The exclusive lock is also called an update or a write lock. The
intention of this lock is to provide exclusive use of the data
item to one transaction. If a transaction T locks a data item Q
in an exclusive mode no other transaction can access Q until
the lock is released by transaction T.

Shared Lock

 The shared lock is also called a read lock. The intention of
this mode of locking is to ensure that the data item does not
undergo any modifications while it is locked in this mode.
Any number of transactions can concurrently lack and access
a data item in the shared mode, but none of these
transactions can modify the data item. A data item locked in
a shared mode can not be locked in the exclusive mode until
the shared lock is released by all transactions holding the
lock.

Applications

 Concurrency control in data bases is used to avoid the
problems of dead locks as this is one of the serious problems
in data base management systems

Scope of Research

 Isolation requirements in concurrency control

 Thread safety for concurrent clients

 Concurrency control in distributed database systems

 Realization of Transaction Concurrency Control in Grid
Database

 Realization of concurrency control in grid data bases

