
Course Name:
Database Management
Systems

Lecture 22
Topics to be covered

 Serializability

 Introduction

Conflict Serializability

View Serializability

Testing for Serializability

Applications

Scope of Research

2

Introduction
Basic Assumption – Each transaction preserves database

consistency.

Thus serial execution of a set of transactions preserves
database consistency.

A (possibly concurrent) schedule is serializable if it is
equivalent to a serial schedule. Different forms of schedule
equivalence give rise to the notions of:

1. conflict serializability

2. view serializability

Simplified view of transactions

We ignore operations other than read and write instructions

We assume that transactions may perform arbitrary computations
on data in local buffers in between reads and writes.

Our simplified schedules consist of only read and write
instructions.

Conflicting Instructions

 Instructions li and lj of transactions Ti and Tj respectively,
conflict if and only if there exists some item Q accessed by
both li and lj, and at least one of these instructions wrote Q.

 1. li = read(Q), lj = read(Q). li and lj don’t conflict.
 2. li = read(Q), lj = write(Q). They conflict.
 3. li = write(Q), lj = read(Q). They conflict
 4. li = write(Q), lj = write(Q). They conflict

 Intuitively, a conflict between li and lj forces a (logical)
temporal order between them.

 If li and lj are consecutive in a schedule and they do not conflict,
their results would remain the same even if they had been
interchanged in the schedule.

Conflict Serializability

 If a schedule S can be transformed into a schedule S´ by a
series of swaps of non-conflicting instructions, we say that S
and S´ are conflict equivalent.

 We say that a schedule S is conflict serializable if it is
conflict equivalent to a serial schedule

Conflict Serializability (Cont.)

 Schedule 3 can be transformed into Schedule 6, a
serial schedule where T2 follows T1, by series of
swaps of non-conflicting instructions.

 Therefore Schedule 3 is conflict serializable.

Schedule 3 Schedule 6

Conflict Serializability (Cont.)

 Example of a schedule that is not conflict serializable:

 We are unable to swap instructions in the above schedule to
obtain either the serial schedule < T3, T4 >, or the serial
schedule < T4, T3 >.

View Serializability
Let S and S´ be two schedules with the same set of

transactions. S and S´ are view equivalent if the following
three conditions are met, for each data item Q,

1. If in schedule S, transaction Ti reads the initial value of Q, then
in schedule S’ also transaction Ti must read the initial value of
Q.

2. If in schedule S transaction Ti executes read(Q), and that value
was produced by transaction Tj (if any), then in schedule S’
also transaction Ti must read the value of Q that was produced
by the same write(Q) operation of transaction Tj .

3. The transaction (if any) that performs the final write(Q)
operation in schedule S must also perform the final write(Q)
operation in schedule S’.

As can be seen, view equivalence is also based purely on
reads and writes alone.

View Serializability (Cont.)

 A schedule S is view serializable if it is view equivalent to a
serial schedule.

 Every conflict serializable schedule is also view serializable.

 Below is a schedule which is view-serializable but not conflict
serializable.

 What serial schedule is above equivalent to?

 Every view serializable schedule that is not conflict serializable
has blind writes.

Other Notions of Serializability
 The schedule below produces same outcome as the

serial schedule < T1, T5 >, yet is not conflict equivalent
or view equivalent to it.

 Determining such equivalence requires analysis of
operations other than read and write.

Testing for Serializability
 Consider some schedule of a set of transactions T1,

T2, ..., Tn

 Precedence graph — a direct graph where the
vertices are the transactions (names).

 We draw an arc from Ti to Tj if the two transaction
conflict, and Ti accessed the data item on which the
conflict arose earlier.

 We may label the arc by the item that was accessed.

 Example 1 x

y

Example Schedule (Schedule A) +
Precedence Graph

 T1 T2 T3 T4 T5
 read(X)
read(Y)
read(Z)
 read(V)
 read(W)
 read(W)
 read(Y)
 write(Y)
 write(Z)
read(U)
 read(Y)
 write(Y)
 read(Z)
 write(Z)

read(U)
write(U)

T3
T4

T1 T2

T5

Test for Conflict Serializability
 A schedule is conflict serializable if and

only if its precedence graph is acyclic.

 Cycle-detection algorithms exist which
take order n2 time, where n is the
number of vertices in the graph.

 (Better algorithms take order n + e
where e is the number of edges.)

 If precedence graph is acyclic, the
serializability order can be obtained by
a topological sorting of the graph.

 This is a linear order consistent with
the partial order of the graph.

 For example, a serializability order for
Schedule A would be
T5 T1 T3 T2 T4

 Are there others?

Test for View Serializability

 The precedence graph test for conflict serializability cannot
be used directly to test for view serializability.

 Extension to test for view serializability has cost exponential in
the size of the precedence graph.

 The problem of checking if a schedule is view serializable falls
in the class of NP-complete problems.

 Thus existence of an efficient algorithm is extremely unlikely.

 However practical algorithms that just check some sufficient
conditions for view serializability can still be used.

Recoverable Schedules

 Recoverable schedule — if a transaction Tj reads a data item
previously written by a transaction Ti , then the commit
operation of Ti appears before the commit operation of Tj.

 The following schedule (Schedule 11) is not recoverable if T9
commits immediately after the read

 If T8 should abort, T9 would have read (and possibly shown to
the user) an inconsistent database state. Hence, database
must ensure that schedules are recoverable.

Need to address the effect of transaction failures on concurrently

running transactions.

Cascading Rollbacks
 Cascading rollback – a single transaction failure leads

to a series of transaction rollbacks. Consider the
following schedule where none of the transactions has
yet committed (so the schedule is recoverable)

If T10 fails, T11 and T12 must also be rolled back.

 Can lead to the undoing of a significant amount of work

Cascadeless Schedules

 Cascadeless schedules — cascading rollbacks cannot
occur; for each pair of transactions Ti and Tj such that Tj
reads a data item previously written by Ti, the commit
operation of Ti appears before the read operation of Tj.

 Every cascadeless schedule is also recoverable

 It is desirable to restrict the schedules to those that are
cascadeless

Applications

 Serializability is the major correctness criterion for
concurrent transactions' executions. It is considered the
highest level of isolation between transactions, and plays
an essential role in concurrency control. As such it is
supported in all general purpose database systems.
Strict and two phase (SS2PL) is a popular serializability
mechanism utilized in most of the database systems (in
various variants) since their early days.

Scope of research

 Intrusion Detection and Containment in
Database Systems

 Crime File management

Mobile database research

 Computer Integrated Manufacturing

 Spatial databases

