Course Name:
Database Managemen
Systems

Lecture 21 %

Topics to be covered X

O Transactions

Introduction
Example
Properties
State Diagram

Transaction Concept

O A transaction is a unit of program execution that
accesses and possibly updates various data items.

O E.g. transaction to transfer $50 from account A to account

B:
1. read(A)
2.A:=A-50

3. write(A)

Example of Fund Transfer

Transaction to transfer $50 from account A to account B:
read(A)

A:=A-50

write(A)

read(B)

B:=B+ 50

write(B)

B Y N =

Atomicity requirement

Example of Fund Transfer (Cont.)

Transaction to transfer $50 from account A to account B:

1. read(A)
2. A:=A-50
3. write(A)
4. read(B)
5. B:=B+50
6. write(B)

Consistency requirement in above example:

the sum of A and B is unchanged by the execution of the
transaction

In general, consistency requirements include
Explicitly specified integrity constraints such as primary keys and foreign keys
Implicit integrity constraints

eth' sum of b Iancef of all a couRts rninuds sum of loan
amounts must equal value of cash-ih-han

When the transaction completes successfully the database must
be consistent

Erroneous transaction logic can lead to inconsistency

Example of Fund Transfer (Cont.)

O Isolation requirement — if between steps 3 and 6, another
transaction T2 is allowed to access the partially updated
database, it will see an inconsistent database (the sum A + B

will be less than it should be).
Tl T2

1. read(A)
2.A:=A-50
3. write(A)

read(A), read(B), print(A+B)

ACID Properties

A transaction is a unit of program execution that accesses and possibly
updates various data items.To preserve the integrity of data the database
system must ensure:

o

Atomicity. Either all operations of the transaction are properly
reflected in the database or none are.

Consistency. Execution of a transaction in isolation preserves the
consistency of the database.

Isolation. Although multiple transactions may execute
concurrently, each transaction must be unaware of other
concurrently executing transactions. Intermediate transaction
results must be hidden from other concurrently executed
transactions.

O That is, for every pair of transactions T; and T, it appears to T,
that e|ther T, finished execution before T started or T; started
execution after T; finished.

Durability. After a transaction completes successfully, the
changes it has made to the database persist, even if there are
system failures.

Transaction State

o

o

Active - the initial state; the transaction stays in this state
while it is executing

Partially committed - after the final statement has been
executed.

Failed -- after the discovery that normal execution can no
longer proceed.

Aborted - after the transaction has been rolled back and
the database restored to its state prior to the start of the

Transaction State (Cont.)

partially

. committed
committed

- aborted

Implementation of Atomicity and Durability

O The recovery-management component of a database
system implements the support for atomicity and durability.

O E.g. the shadow-database scheme:

O all updates are made on a shadow copy of the database
O db_pointer is made to point to the updated shadow copy after

O the transaction reaches partial commit and

O all updated pages have been flushed to disk.

db-pointer db-pointer

old copy of Oilciltc.;lfa);gf new copy of

datab
= (to be deleted) stlebbls

(a) Before update (b) After update

Implementation of Atomicity and Durability
(Cont.)

O db_pointer always points to the current consistent copy of the
database.

O In case transaction fails, old consistent copy pointed to by
db_pointer can be used, and the shadow copy can be
deleted.

O The shadow-database scheme:
O Assumes that only one transaction is active at a time.
O Assumes disks do not fail
O Useful for text editors, but

O extremely inefficient for large databases (why?)

O Variant called shadow paging reduces copying of data,
but is still not practical for large databases

Schedules

O Schedule - a sequences of instructions that specify the
chronological order in which instructions of concurrent
transactions are executed

O a schedule for a set of transactions must consist of all
instructions of those transactions

O must preserve the order in which the instructions appear in
each individual transaction.

O A transaction that successfully completes its execution will
have a commit instructions as the last statement

O by default transaction assumed to execute commit
instruction as its last step

O A transaction that fails to successfully complete its execution
will have an abort instruction as the last statement

Schedule 1

O Let 7, transfer $50 from A to B, and T, transfer
10% of the balance from A to B.

O A serial schedule in which T; is followed by T5 :

Wr.ite (B)

read(A)

temp :=A *0.1
A=A—- temp
write(A)
read(B)

B :=B + temp
write(B)

Schedule 2

* A serial schedule where T, is followed by T,

read(A)

temp == A * 0.1
A=A — temp
write(A)
read(B)

B =B + temp

write(B)

Schedule 3

1 Let 7; and T, be the transactions defined
previously. 2I'he following schedule is not a serial
schedule, but it is equivalent to Schedule 1.

read(A)
A=A -50
write(A)

read(A)
temp :=A*0.1
A=A - temp

write(A)

In Schedules 1, 2 and 3, the sum A + B is preserved.

Schedule 4

O The following concurrent schedule does not preserve
the value of (A + B).

read(A)
temp := A * 0.1
A=A —temp
write (A)

read(B)

B :=B + temp
write (B)

Applications

O Banking
O Shopping Malls
O Airports

O Organizations

Scope of Research

O Models of transactions, including savepoints,
chained transactions, transactional queues, nested
and multilevel transactions, distributed
transactions, multidatabase systems, and workflow
systems

O Transactional remote procedure call and peer-to-
peer communication together with their use in
organizing a transaction processing system are
discussed

O Implementation of transaction architectures and
models in transaction processing applications on
the Internet

