
Course Name:
Database Management
Systems

Lecture 21
Topics to be covered

 Transactions

Introduction

Example

Properties

State Diagram

Implementation of Atomicity and Durability

Schedules

Applications

Scope of research

2

Transaction Concept
 A transaction is a unit of program execution that

accesses and possibly updates various data items.

 E.g. transaction to transfer $50 from account A to account
B:

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

 Two main issues to deal with:

 Failures of various kinds, such as hardware failures and
system crashes

 Concurrent execution of multiple transactions

Example of Fund Transfer
Transaction to transfer $50 from account A to account B:

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

Atomicity requirement

if the transaction fails after step 3 and before step 6, money will be
“lost” leading to an inconsistent database state

the system should ensure that updates of a partially executed
transaction are not reflected in the database

Durability requirement — once the user has been notified that the
transaction has completed (i.e., the transfer of the $50 has taken place),
the updates to the database by the transaction must persist even if there
are software or hardware failures.

Example of Fund Transfer (Cont.)

Transaction to transfer $50 from account A to account B:

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

Consistency requirement in above example:

 the sum of A and B is unchanged by the execution of the
transaction

In general, consistency requirements include
 Explicitly specified integrity constraints such as primary keys and foreign keys

 Implicit integrity constraints

e.g. sum of balances of all accounts, minus sum of loan
amounts must equal value of cash-in-hand

When the transaction completes successfully the database must
be consistent
 Erroneous transaction logic can lead to inconsistency

Example of Fund Transfer (Cont.)

 Isolation requirement — if between steps 3 and 6, another
transaction T2 is allowed to access the partially updated
database, it will see an inconsistent database (the sum A + B
will be less than it should be).
 T1 T2

1. read(A)

2. A := A – 50

3. write(A)
 read(A), read(B), print(A+B)

4. read(B)

5. B := B + 50

6. write(B

 Isolation can be ensured trivially by running transactions
serially

 that is, one after the other.

ACID Properties

 Atomicity. Either all operations of the transaction are properly
reflected in the database or none are.

 Consistency. Execution of a transaction in isolation preserves the
consistency of the database.

 Isolation. Although multiple transactions may execute
concurrently, each transaction must be unaware of other
concurrently executing transactions. Intermediate transaction
results must be hidden from other concurrently executed
transactions.

 That is, for every pair of transactions Ti and Tj, it appears to Ti
that either Tj, finished execution before Ti started, or Tj started
execution after Ti finished.

 Durability. After a transaction completes successfully, the
changes it has made to the database persist, even if there are
system failures.

A transaction is a unit of program execution that accesses and possibly

updates various data items.To preserve the integrity of data the database

system must ensure:

Transaction State

 Active – the initial state; the transaction stays in this state
while it is executing

 Partially committed – after the final statement has been
executed.

 Failed -- after the discovery that normal execution can no
longer proceed.

 Aborted – after the transaction has been rolled back and
the database restored to its state prior to the start of the
transaction. Two options after it has been aborted:

 restart the transaction

 can be done only if no internal logical error

 kill the transaction

 Committed – after successful completion.

Transaction State (Cont.)

Implementation of Atomicity and Durability

 The recovery-management component of a database
system implements the support for atomicity and durability.

 E.g. the shadow-database scheme:

 all updates are made on a shadow copy of the database

 db_pointer is made to point to the updated shadow copy after

 the transaction reaches partial commit and

all updated pages have been flushed to disk.

Implementation of Atomicity and Durability
(Cont.)

 db_pointer always points to the current consistent copy of the
database.

 In case transaction fails, old consistent copy pointed to by
db_pointer can be used, and the shadow copy can be
deleted.

 The shadow-database scheme:

 Assumes that only one transaction is active at a time.

 Assumes disks do not fail

 Useful for text editors, but

 extremely inefficient for large databases (why?)

Variant called shadow paging reduces copying of data,
but is still not practical for large databases

Schedules

 Schedule – a sequences of instructions that specify the
chronological order in which instructions of concurrent
transactions are executed

 a schedule for a set of transactions must consist of all
instructions of those transactions

 must preserve the order in which the instructions appear in
each individual transaction.

 A transaction that successfully completes its execution will
have a commit instructions as the last statement

 by default transaction assumed to execute commit
instruction as its last step

 A transaction that fails to successfully complete its execution
will have an abort instruction as the last statement

Schedule 1
 Let T1 transfer $50 from A to B, and T2 transfer

10% of the balance from A to B.

 A serial schedule in which T1 is followed by T2 :

Schedule 2
• A serial schedule where T2 is followed by T1

Schedule 3
 Let T1 and T2 be the transactions defined

previously. The following schedule is not a serial
schedule, but it is equivalent to Schedule 1.

In Schedules 1, 2 and 3, the sum A + B is preserved.

Schedule 4
 The following concurrent schedule does not preserve

the value of (A + B).

Applications

 Banking

 Shopping Malls

 Airports

 Organizations

 IT

 Government Organizations

 And many more..

Scope of Research

 Models of transactions, including savepoints,
chained transactions, transactional queues, nested
and multilevel transactions, distributed
transactions, multidatabase systems, and workflow
systems

 Transactional remote procedure call and peer-to-
peer communication together with their use in
organizing a transaction processing system are
discussed

 Implementation of transaction architectures and
models in transaction processing applications on
the Internet

