
Course Name:
Database Management
Systems

Lecture 21
Topics to be covered

 Transactions

Introduction

Example

Properties

State Diagram

Implementation of Atomicity and Durability

Schedules

Applications

Scope of research

2

Transaction Concept
 A transaction is a unit of program execution that

accesses and possibly updates various data items.

 E.g. transaction to transfer $50 from account A to account
B:

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

 Two main issues to deal with:

 Failures of various kinds, such as hardware failures and
system crashes

 Concurrent execution of multiple transactions

Example of Fund Transfer
Transaction to transfer $50 from account A to account B:

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

Atomicity requirement

if the transaction fails after step 3 and before step 6, money will be
“lost” leading to an inconsistent database state

the system should ensure that updates of a partially executed
transaction are not reflected in the database

Durability requirement — once the user has been notified that the
transaction has completed (i.e., the transfer of the $50 has taken place),
the updates to the database by the transaction must persist even if there
are software or hardware failures.

Example of Fund Transfer (Cont.)

Transaction to transfer $50 from account A to account B:

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

Consistency requirement in above example:

 the sum of A and B is unchanged by the execution of the
transaction

In general, consistency requirements include
 Explicitly specified integrity constraints such as primary keys and foreign keys

 Implicit integrity constraints

e.g. sum of balances of all accounts, minus sum of loan
amounts must equal value of cash-in-hand

When the transaction completes successfully the database must
be consistent
 Erroneous transaction logic can lead to inconsistency

Example of Fund Transfer (Cont.)

 Isolation requirement — if between steps 3 and 6, another
transaction T2 is allowed to access the partially updated
database, it will see an inconsistent database (the sum A + B
will be less than it should be).
 T1 T2

1. read(A)

2. A := A – 50

3. write(A)
 read(A), read(B), print(A+B)

4. read(B)

5. B := B + 50

6. write(B

 Isolation can be ensured trivially by running transactions
serially

 that is, one after the other.

ACID Properties

 Atomicity. Either all operations of the transaction are properly
reflected in the database or none are.

 Consistency. Execution of a transaction in isolation preserves the
consistency of the database.

 Isolation. Although multiple transactions may execute
concurrently, each transaction must be unaware of other
concurrently executing transactions. Intermediate transaction
results must be hidden from other concurrently executed
transactions.

 That is, for every pair of transactions Ti and Tj, it appears to Ti
that either Tj, finished execution before Ti started, or Tj started
execution after Ti finished.

 Durability. After a transaction completes successfully, the
changes it has made to the database persist, even if there are
system failures.

A transaction is a unit of program execution that accesses and possibly

updates various data items.To preserve the integrity of data the database

system must ensure:

Transaction State

 Active – the initial state; the transaction stays in this state
while it is executing

 Partially committed – after the final statement has been
executed.

 Failed -- after the discovery that normal execution can no
longer proceed.

 Aborted – after the transaction has been rolled back and
the database restored to its state prior to the start of the
transaction. Two options after it has been aborted:

 restart the transaction

 can be done only if no internal logical error

 kill the transaction

 Committed – after successful completion.

Transaction State (Cont.)

Implementation of Atomicity and Durability

 The recovery-management component of a database
system implements the support for atomicity and durability.

 E.g. the shadow-database scheme:

 all updates are made on a shadow copy of the database

 db_pointer is made to point to the updated shadow copy after

 the transaction reaches partial commit and

all updated pages have been flushed to disk.

Implementation of Atomicity and Durability
(Cont.)

 db_pointer always points to the current consistent copy of the
database.

 In case transaction fails, old consistent copy pointed to by
db_pointer can be used, and the shadow copy can be
deleted.

 The shadow-database scheme:

 Assumes that only one transaction is active at a time.

 Assumes disks do not fail

 Useful for text editors, but

 extremely inefficient for large databases (why?)

Variant called shadow paging reduces copying of data,
but is still not practical for large databases

Schedules

 Schedule – a sequences of instructions that specify the
chronological order in which instructions of concurrent
transactions are executed

 a schedule for a set of transactions must consist of all
instructions of those transactions

 must preserve the order in which the instructions appear in
each individual transaction.

 A transaction that successfully completes its execution will
have a commit instructions as the last statement

 by default transaction assumed to execute commit
instruction as its last step

 A transaction that fails to successfully complete its execution
will have an abort instruction as the last statement

Schedule 1
 Let T1 transfer $50 from A to B, and T2 transfer

10% of the balance from A to B.

 A serial schedule in which T1 is followed by T2 :

Schedule 2
• A serial schedule where T2 is followed by T1

Schedule 3
 Let T1 and T2 be the transactions defined

previously. The following schedule is not a serial
schedule, but it is equivalent to Schedule 1.

In Schedules 1, 2 and 3, the sum A + B is preserved.

Schedule 4
 The following concurrent schedule does not preserve

the value of (A + B).

Applications

 Banking

 Shopping Malls

 Airports

 Organizations

 IT

 Government Organizations

 And many more..

Scope of Research

 Models of transactions, including savepoints,
chained transactions, transactional queues, nested
and multilevel transactions, distributed
transactions, multidatabase systems, and workflow
systems

 Transactional remote procedure call and peer-to-
peer communication together with their use in
organizing a transaction processing system are
discussed

 Implementation of transaction architectures and
models in transaction processing applications on
the Internet

