
Course Name:
Database Management
Systems

Lecture 17 and 18
Topics to be covered

 Database System Architectures

 Distributed Database

 Parallel Database

2

Introduction

 Distributed Data base system consists of loosely

coupled sides that share no physical

Components and the parallel processors are

tightly coupled and constitute a single data

Base system

Scope

 Distributed database are widely used in large
data processing, today’s word using the
internet, e-banking system, whether
forecasting etc. where large amount of data is
processed, so there we need of data
processing if data is distributed in many
places then that is distributed data
processing, there fore scope of parallel data
bases and distributed data processing is very
bright.

Research

Lots of research is going on in
distributed data processing and parallel
databases.

 Database System Architectures

Centralized and Client-Server Systems

Server System Architectures

Parallel Systems

Distributed Systems

Network Types

Centralized Systems

Run on a single computer system and do not interact
with other computer systems.

General-purpose computer system: one to a few CPUs
and a number of device controllers that are connected
through a common bus that provides access to shared
memory.

Single-user system (e.g., personal computer or
workstation): desk-top unit, single user, usually has only
one CPU and one or two hard disks; the OS may
support only one user.

Multi-user system: more disks, more memory, multiple
CPUs, and a multi-user OS. Serve a large number of
users who are connected to the system vie terminals.
Often called server systems.

A Centralized Computer System

Client-Server Systems

Server systems satisfy requests generated at m

client systems, whose general structure is shown

below:

Client-Server Systems (Cont.)
 Database functionality can be divided into:

 Back-end: manages access structures, query evaluation and
optimization, concurrency control and recovery.

 Front-end: consists of tools such as forms, report-writers,
and graphical user interface facilities.

 The interface between the front-end and the back-end is through
SQL or through an application program interface.

Client-Server Systems (Cont.)

 Advantages of replacing mainframes with networks of workstations or

personal computers connected to back-end server machines:

better functionality for the cost

flexibility in locating resources and

expanding facilities

better user interfaces

easier maintenance

Server System Architecture

Server systems can be broadly

categorized into two kinds:
 transaction servers which are widely used in relational database

systems, and

 data servers, used in object-oriented database systems

Transaction Servers

 Also called query server systems or SQL server systems

 Clients send requests to the server

 Transactions are executed at the server

 Results are shipped back to the client.

 Requests are specified in SQL, and communicated to the

server through a remote procedure call (RPC) mechanism.

 Transactional RPC allows many RPC calls to form a

transaction.

 Open Database Connectivity (ODBC) is a C language

application program interface standard from Microsoft for

connecting to a server, sending SQL requests, and receiving

results.

 JDBC standard is similar to ODBC, for Java

Transaction Server Process Structure

 A typical transaction server consists of multiple
processes accessing data in shared memory.

 Server processes

These receive user queries (transactions),
execute them and send results back

Processes may be multithreaded, allowing a
single process to execute several user queries
concurrently

Typically multiple multithreaded server processes

 Lock manager process

More on this later

 Database writer process

Output modified buffer blocks to disks continually

Transaction Server Processes (Cont.)

 Log writer process

Server processes simply add log records to log

record buffer

Log writer process outputs log records to stable

storage.

 Checkpoint process

Performs periodic checkpoints

 Process monitor process

Monitors other processes, and takes recovery actions

if any of the other processes fail

 E.g. aborting any transactions being executed by a server process and restarting it

Transaction System Processes (Cont.)

Transaction System Processes (Cont.)

 Shared memory contains shared data

 Buffer pool

 Lock table

 Log buffer

 Cached query plans (reused if same query submitted again)

 All database processes can access shared memory

 To ensure that no two processes are accessing the same data
structure at the same time, databases systems implement mutual
exclusion using either

 Operating system semaphores

 Atomic instructions such as test-and-set

 To avoid overhead of interprocess communication for lock
request/grant, each database process operates directly on the
lock table

 instead of sending requests to lock manager process

 Lock manager process still used for deadlock detection

Data Servers

 Used in high-speed LANs, in cases where

 The clients are comparable in processing power to the
server

 The tasks to be executed are compute intensive.

 Data are shipped to clients where processing is performed,
and then shipped results back to the server.

 This architecture requires full back-end functionality at the
clients.

 Used in many object-oriented database systems

 Issues:

 Page-Shipping versus Item-Shipping

 Locking

 Data Caching

 Lock Caching

Data Servers (Cont.)

 Page-shipping versus item-shipping

 Smaller unit of shipping  more messages

 Worth prefetching related items along with requested item

 Page shipping can be thought of as a form of prefetching

 Locking

 Overhead of requesting and getting locks from server is high due to
message delays

 Can grant locks on requested and prefetched items; with page shipping,
transaction is granted lock on whole page.

 Locks on a prefetched item can be P{called back} by the server, and
returned by client transaction if the prefetched item has not been used.

 Locks on the page can be deescalated to locks on items in the page when
there are lock conflicts. Locks on unused items can then be returned to
server.

Data Servers (Cont.)
 Data Caching

 Data can be cached at client even in between transactions

 But check that data is up-to-date before it is used (cache
coherency)

 Check can be done when requesting lock on data item

 Lock Caching

 Locks can be retained by client system even in between transactions

 Transactions can acquire cached locks locally, without contacting
server

 Server calls back locks from clients when it receives conflicting lock
request. Client returns lock once no local transaction is using it.

 Similar to deescalation, but across transactions.

Parallel Systems

Parallel database systems consist of multiple processors and
multiple disks connected by a fast interconnection network.

A coarse-grain parallel machine consists of a small number of
powerful processors

A massively parallel or fine grain parallel machine utilizes
thousands of smaller processors.

Two main performance measures:

throughput --- the number of tasks that can be completed in a
given time interval

response time --- the amount of time it takes to complete a
single task from the time it is submitted

Speed-Up and Scale-Up

 Speedup: a fixed-sized problem executing on a small
system is given to a system which is N-times larger.

 Measured by:

speedup = small system elapsed time

 large system elapsed time

 Speedup is linear if equation equals N.

 Scaleup: increase the size of both the problem and the
system

 N-times larger system used to perform N-times larger job

 Measured by:

scaleup = small system small problem elapsed time

 big system big problem elapsed time

 Scale up is linear if equation equals 1.

Speedup

Speedup

Scaleup

Scaleup

Batch and Transaction Scaleup

 Batch scaleup:

A single large job; typical of most decision support
queries and scientific simulation.

Use an N-times larger computer on N-times larger
problem.

 Transaction scaleup:

Numerous small queries submitted by independent
users to a shared database; typical transaction
processing and timesharing systems.

N-times as many users submitting requests (hence,
N-times as many requests) to an N-times larger
database, on an N-times larger computer.

Well-suited to parallel execution.

Factors Limiting Speedup and
Scaleup
Speedup and scaleup are often sublinear due to:

 Startup costs: Cost of starting up multiple processes may
dominate computation time, if the degree of parallelism is
high.

 Interference: Processes accessing shared resources
(e.g.,system bus, disks, or locks) compete with each other,
thus spending time waiting on other processes, rather than
performing useful work.

 Skew: Increasing the degree of parallelism increases the
variance in service times of parallely executing tasks. Overall
execution time determined by slowest of parallely executing
tasks.

Interconnection Network
Architectures

 Bus. System components send data on and receive data from
a single communication bus;

 Does not scale well with increasing parallelism.

 Mesh. Components are arranged as nodes in a grid, and each
component is connected to all adjacent components

 Communication links grow with growing number of components, and so
scales better.

 But may require 2n hops to send message to a node (or n with
wraparound connections at edge of grid).

 Hypercube. Components are numbered in binary;
components are connected to one another if their binary
representations differ in exactly one bit.

 n components are connected to log(n) other components and can reach
each other via at most log(n) links; reduces communication delays.

Interconnection Architectures

Parallel Database Architectures

 Shared memory -- processors share a common

memory

 Shared disk -- processors share a common disk

 Shared nothing -- processors share neither a

common memory nor common disk

 Hierarchical -- hybrid of the above architectures

Parallel Database Architectures

Shared Memory
 Processors and disks have access to a common

memory, typically via a bus or through an

interconnection network.

 Extremely efficient communication between

processors — data in shared memory can be

accessed by any processor without having to move

it using software.

 Downside – architecture is not scalable beyond 32

or 64 processors since the bus or the

interconnection network becomes a bottleneck

Widely used for lower degrees of parallelism (4 to 8).

Shared Disk
 All processors can directly access all disks via an

interconnection network, but the processors have private
memories.

 The memory bus is not a bottleneck

 Architecture provides a degree of fault-tolerance — if a
processor fails, the other processors can take over its tasks
since the database is resident on disks that are accessible
from all processors.

 Examples: IBM Sysplex and DEC clusters (now part of
Compaq) running Rdb (now Oracle Rdb) were early commercial
users

 Downside: bottleneck now occurs at interconnection to the disk
subsystem.

 Shared-disk systems can scale to a somewhat larger number
of processors, but communication between processors is
slower.

Shared Nothing
 Node consists of a processor, memory, and one or more

disks. Processors at one node communicate with another
processor at another node using an interconnection network.
A node functions as the server for the data on the disk or
disks the node owns.

 Examples: Teradata, Tandem, Oracle-n CUBE

 Data accessed from local disks (and local memory accesses)
do not pass through interconnection network, thereby
minimizing the interference of resource sharing.

 Shared-nothing multiprocessors can be scaled up to
thousands of processors without interference.

 Main drawback: cost of communication and non-local disk
access; sending data involves software interaction at both
ends.

Hierarchical
 Combines characteristics of shared-memory, shared-disk,

and shared-nothing architectures.

 Top level is a shared-nothing architecture – nodes connected
by an interconnection network, and do not share disks or
memory with each other.

 Each node of the system could be a shared-memory system
with a few processors.

 Alternatively, each node could be a shared-disk system, and
each of the systems sharing a set of disks could be a shared-
memory system.

 Reduce the complexity of programming such systems by
distributed virtual-memory architectures

 Also called non-uniform memory architecture
(NUMA)

Distributed Systems

 Data spread over multiple machines (also referred to as sites
or nodes).

 Network interconnects the machines

 Data shared by users on multiple machines

Distributed Databases

 Homogeneous distributed databases

 Same software/schema on all sites, data may be
partitioned among sites

 Goal: provide a view of a single database, hiding details
of distribution

 Heterogeneous distributed databases

 Different software/schema on different sites

 Goal: integrate existing databases to provide useful
functionality

 Differentiate between local and global transactions

 A local transaction accesses data in the single site at
which the transaction was initiated.

 A global transaction either accesses data in a site
different from the one at which the transaction was
initiated or accesses data in several different sites.

Trade-offs in Distributed Systems

 Sharing data – users at one site able to access the data
residing at some other sites.

 Autonomy – each site is able to retain a degree of control
over data stored locally.

 Higher system availability through redundancy — data
can be replicated at remote sites, and system can
function even if a site fails.

 Disadvantage: added complexity required to ensure
proper coordination among sites.

Software development cost.

Greater potential for bugs.

 Increased processing overhead.

Implementation Issues for Distributed

Databases

 Atomicity needed even for transactions that update data at
multiple sites

 The two-phase commit protocol (2PC) is used to ensure atomicity

 Basic idea: each site executes transaction until just before
commit, and the leaves final decision to a coordinator

 Each site must follow decision of coordinator, even if there is a
failure while waiting for coordinators decision

 2PC is not always appropriate: other transaction models based
on persistent messaging, and workflows, are also used

 Distributed concurrency control (and deadlock detection) required

 Data items may be replicated to improve data availability

 Details of above in Chapter 22

Network Types

 Local-area networks (LANs) – composed of

processors that are distributed over small

geographical areas, such as a single building or a

few adjacent buildings.

Wide-area networks (WANs) – composed of

processors distributed over a large geographical

area.

Networks Types (Cont.)

WANs with continuous connection (e.g. the Internet)

are needed for implementing distributed database

systems

 Groupware applications such as Lotus notes can

work on WANs with discontinuous connection:

Data is replicated.

Updates are propagated to replicas periodically.

Copies of data may be updated independently.

Non-serializable executions can thus result.

Resolution is application dependent.

Parallel Databases

 Introduction

 I/O Parallelism

 Interquery Parallelism

 Intraquery Parallelism

 Intraoperation Parallelism

 Interoperation Parallelism

 Design of Parallel Systems

Introduction

 Parallel machines are becoming quite common and affordable

 Prices of microprocessors, memory and disks have dropped sharply

 Recent desktop computers feature multiple processors and this trend is
projected to accelerate

 Databases are growing increasingly large

 large volumes of transaction data are collected and stored for later
analysis.

 multimedia objects like images are increasingly stored in databases

 Large-scale parallel database systems increasingly used for:

 storing large volumes of data

 processing time-consuming decision-support queries

 providing high throughput for transaction processing

Parallelism in Databases

 Data can be partitioned across multiple disks for parallel I/O.

 Individual relational operations (e.g., sort, join, aggregation)
can be executed in parallel

 data can be partitioned and each processor can work
independently on its own partition.

 Queries are expressed in high level language (SQL,
translated to relational algebra)

 makes parallelization easier.

 Different queries can be run in parallel with each other.
 Concurrency control takes care of conflicts.

 Thus, databases naturally lend themselves to parallelism.

I/O Parallelism

 Reduce the time required to retrieve relations from disk by
partitioning

 the relations on multiple disks.

 Horizontal partitioning – tuples of a relation are divided among
many disks such that each tuple resides on one disk.

 Partitioning techniques (number of disks = n):

Round-robin:

Send the ith tuple inserted in the relation to disk i mod n.

Hash partitioning:

 Choose one or more attributes as the partitioning attributes.

 Choose hash function h with range 0…n - 1

 Let i denote result of hash function h applied to the partitioning
attribute value of a tuple. Send tuple to disk i.

I/O Parallelism (Cont.)

 Partitioning techniques (cont.):

 Range partitioning:

 Choose an attribute as the partitioning attribute.

 A partitioning vector [vo, v1, ..., vn-2] is chosen.

 Let v be the partitioning attribute value of a tuple. Tuples such
that vi  vi+1 go to disk I + 1. Tuples with v < v0 go to disk 0 and
tuples with v  vn-2 go to disk n-1.

E.g., with a partitioning vector [5,11], a tuple with partitioning
attribute value of 2 will go to disk 0, a tuple with value 8 will go
to disk 1, while a tuple with value 20 will go to disk2.

Comparison of Partitioning Techniques

 Evaluate how well partitioning techniques support the
following types of data access:

 1.Scanning the entire relation.

 2.Locating a tuple associatively – point queries.

 E.g., r.A = 25.

 3.Locating all tuples such that the value of a given attribute
lies within a specified range – range queries.

 E.g., 10  r.A < 25.

Comparison of Partitioning Techniques (Cont.)

Round robin:

 Advantages

 Best suited for sequential scan of entire relation on each query.

 All disks have almost an equal number of tuples; retrieval work is
thus well balanced between disks.

 Range queries are difficult to process

 No clustering -- tuples are scattered across all disks

Comparison of Partitioning Techniques(Cont.)

Hash partitioning:

 Good for sequential access

 Assuming hash function is good, and partitioning attributes form
a key, tuples will be equally distributed between disks

 Retrieval work is then well balanced between disks.

 Good for point queries on partitioning attribute

 Can lookup single disk, leaving others available for answering
other queries.

 Index on partitioning attribute can be local to disk, making
lookup and update more efficient

 No clustering, so difficult to answer range queries

Comparison of Partitioning Techniques
(Cont.)

 Range partitioning:

 Provides data clustering by partitioning attribute value.

 Good for sequential access

 Good for point queries on partitioning attribute: only one disk
needs to be accessed.

 For range queries on partitioning attribute, one to a few disks
may need to be accessed

 Remaining disks are available for other queries.

 Good if result tuples are from one to a few blocks.

 If many blocks are to be fetched, they are still fetched from one to
a few disks, and potential parallelism in disk access is wasted

 Example of execution skew.

Partitioning a Relation across Disks

 If a relation contains only a few tuples which
will fit into a single disk block, then assign the
relation to a single disk.

 Large relations are preferably partitioned
across all the available disks.

 If a relation consists of m disk blocks and
there are n disks available in the system,
then the relation should be allocated
min(m,n) disks.

Handling of Skew

 The distribution of tuples to disks may be skewed — that is,
some disks have many tuples, while others may have fewer
tuples.

 Types of skew:

 Attribute-value skew.

 Some values appear in the partitioning attributes of many tuples; all
the tuples with the same value for the partitioning attribute end up in
the same partition.

 Can occur with range-partitioning and hash-partitioning.

 Partition skew.

 With range-partitioning, badly chosen partition vector may assign too
many tuples to some partitions and too few to others.

 Less likely with hash-partitioning if a good hash-function is chosen.

Handling Skew in Range-Partitioning

 To create a balanced partitioning vector (assuming partitioning
attribute forms a key of the relation):

 Sort the relation on the partitioning attribute.

 Construct the partition vector by scanning the relation in sorted order as
follows.

 After every 1/nth of the relation has been read, the value of the partitioning
attribute of the next tuple is added to the partition vector.

 n denotes the number of partitions to be constructed.

 Duplicate entries or imbalances can result if duplicates are present in
partitioning attributes.

 Alternative technique based on histograms used in practice

Handling Skew Using Virtual Processor
Partitioning

 Skew in range partitioning can be handled elegantly
using virtual processor partitioning:

 create a large number of partitions (say 10 to 20 times the
number of processors)

 Assign virtual processors to partitions either in round-robin
fashion or based on estimated cost of processing each
virtual partition

 Basic idea:

 If any normal partition would have been skewed, it is very
likely the skew is spread over a number of virtual partitions

 Skewed virtual partitions get spread across a number of
processors, so work gets distributed evenly!

Inter-query Parallelism
 Queries/transactions execute in parallel with one another.

 Increases transaction throughput; used primarily to scale up a
transaction processing system to support a larger number of
transactions per second.

 Easiest form of parallelism to support, particularly in a shared-
memory parallel database, because even sequential database
systems support concurrent processing.

 More complicated to implement on shared-disk or shared-
nothing architectures

 Locking and logging must be coordinated by passing messages
between processors.

 Data in a local buffer may have been updated at another
processor.

 Cache-coherency has to be maintained — reads and writes of
data in buffer must find latest version of data.

Cache Coherency Protocol
 Example of a cache coherency protocol for shared disk

systems:

 Before reading/writing to a page, the page must be locked in
shared/exclusive mode.

 On locking a page, the page must be read from disk

 Before unlocking a page, the page must be written to disk if it was
modified.

 More complex protocols with fewer disk reads/writes exist.

 Cache coherency protocols for shared-nothing systems are
similar. Each database page is assigned a home processor.
Requests to fetch the page or write it to disk are sent to the
home processor.

Intra-query Parallelism

 Execution of a single query in parallel on multiple
processors/disks; important for speeding up long-running
queries.

 Two complementary forms of intraquery parallelism :

 Intraoperation Parallelism – parallelize the execution of each
individual operation in the query.

 Interoperation Parallelism – execute the different operations in
a query expression in parallel.

 the first form scales better with increasing parallelism because
the number of tuples processed by each operation is typically
more than the number of operations in a query

