
Course Name:
Database Management
Systems

Lecture 16
Topics to be covered

 Normalization

NORMAL FORMS
 The normal forms based on FDs are rst normal form (1NF),

second normal form (2NF), third normal form (3NF), and
Boyce-Codd normal form (BCNF).

These forms have increasingly restrictive requirements: Every
relation in BCNF is also in 3NF,

every relation in 3NF is also in 2NF, and every relation in 2NF
is in 1NF.

A relation

is in first normal form if every field contains only atomic
values, that is, not lists or sets.

This requirement is implicit in our defition of the relational
model.

 Although some of the newer database systems are relaxing
this requirement

 2NF is mainly of historical interest.

3NF and BCNF are important from a database design
standpoint.

Normal Forms

 Returning to the issue of schema refinement, the first question to ask is
whether any refinement is needed!

 If a relation is in a certain normal form (BCNF, 3NF etc.), it is known that
certain kinds of problems are avoided/minimized. This can be used to
help us decide whether decomposing the relation will help.

 Role of FDs in detecting redundancy:

 Consider a relation R with 3 attributes, ABC.

 No FDs hold: There is no redundancy here.

 Given A B: Several tuples could have the same A value, and if so, they’ll all have
the same B value!

First Normal Form

 1NF (First Normal Form)

• a relation R is in 1NF if and only if it has only single-valued
attributes (atomic values)

• EMP_PROJ (SSN, PNO, HOURS, ENAME, PNAME, PLOCATION)

 PLOCATION is not in 1NF (multi-valued attrib.)

• solution: decompose the relation

 EMP_PROJ2 (SSN, PNO, HOURS, ENAME, PNAME)

 LOC (PNO, PLOCATION)

Second Normal Form

 2NF (Second Normal Form)

• a relation R in 2NF if and only if it is in 1NF and every
nonkey column depends on a key not a subset of a key

• all nonprime attributes of R must be fully functionally
dependent on a whole key(s) of the relation, not a part of
the key

• no violation: single-attribute key or no nonprime attribute

Second Normal Form (Contd)

2NF (Second Normal Form)

• violation: part of a key nonkey

 EMP_PROJ2 (SSN, PNO, HOURS, ENAME, PNAME)

 SSN ENAME

 PNO PNAME

• solution: decompose the relation

 EMP_PROJ3 (SSN, PNO, HOURS)

 EMP (SSN, ENAME)

 PROJ (PNO, PNAME)

Third Normal Form

 3NF (Third Normal Form)

• a relation R in 3NF if and only if it is in 2NF and every nonkey column
does not depend on another nonkey column

• all nonprime attributes of R must be non-transitively functionally
dependent on a key of the relation

• violation: nonkey nonkey

• fig14.10: 2NF & 3NF normalization

http://ils.unc.edu/~elliv/inls56/notes/figures/fig14.10.pdf

Third Normal Form (Contd)

 3NF (Third Normal Form)

• SUPPLIER (SNAME, STREET, CITY, STATE, TAX)

 SNAME STREET, CITY, STATE

 STATE TAX (nonkey nonkey)

 SNAME STATE TAX (transitive FD)

• solution: decompose the relation

 SUPPLIER2 (SNAME, STREET, CITY, STATE)

 TAXINFO (STATE, TAX)

Boyce-Codd Normal Form (BCNF)

 Reln R with FDs F is in BCNF if, for all X A in

 A X (called a trivial FD), or

 X contains a key for R.

 In other words, R is in BCNF if the only non-trivial FDs that hold over R
are key constraints.

 No dependency in R that can be predicted using FDs alone.

 If we are shown two tuples that agree upon the X value, we cannot infer the A
value in one tuple from the A value in the other.

 If example relation is in BCNF, the 2 tuples must be identical (since X is a
key).

F

X Y A

x y1 a

x y2 ?

Third Normal Form (3NF)

 Reln R with FDs F is in 3NF if, for all X A in

 A X (called a trivial FD), or

 X contains a key for R, or

 A is part of some key for R.

 Minimality of a key is crucial in third condition above!

 If R is in BCNF, obviously in 3NF.

 If R is in 3NF, some redundancy is possible. It is a compromise, used
when BCNF not achievable (e.g., no ``good’’ decomp, or performance
considerations).

 Lossless-join, dependency-preserving decomposition of R into a collection of
3NF relations always possible.

F

Decomposition of a Relation Scheme

 Suppose that relation R contains attributes A1 ... An. A decomposition of
R consists of replacing R by two or more relations such that:

 Each new relation scheme contains a subset of the attributes of R (and no
attributes that do not appear in R), and

 Every attribute of R appears as an attribute of one of the new relations.

 Intuitively, decomposing R means we will store instances of the relation
schemes produced by the decomposition, instead of instances of R.

 E.g., Can decompose SNLRWH into SNLRH and RW.

Example Decomposition

 Decompositions should be used only when needed.

 SNLRWH has FDs S SNLRWH and R W

 Second FD causes violation of 3NF; W values repeatedly associated with R
values. Easiest way to fix this is to create a relation RW to store these
associations, and to remove W from the main schema:

 i.e., we decompose SNLRWH into SNLRH and RW

 The information to be stored consists of SNLRWH tuples. If we just store
the projections of these tuples onto SNLRH and RW, are there any
potential problems that we should be aware of?

Problems with Decompositions

 There are three potential problems to consider:

 Some queries become more expensive.

 e.g., How much did sailor Joe earn? (salary = W*H)

 Given instances of the decomposed relations, we may not be able to
reconstruct the corresponding instance of the original relation!

 Fortunately, not in the SNLRWH example.

 Checking some dependencies may require joining the instances of the
decomposed relations.

 Fortunately, not in the SNLRWH example.

 Tradeoff: Must consider these issues vs. redundancy.

Lossless Join Decompositions

 Decomposition of R into X and Y is lossless-join w.r.t. a set of FDs F if,
for every instance r that satisfies F:

 (r) (r) = r

 It is always true that r (r) (r)

 In general, the other direction does not hold! If it does, the decomposition is
lossless-join.

 Definition extended to decomposition into 3 or more relations in a
straightforward way.

 It is essential that all decompositions used to deal with redundancy be
lossless! (Avoids Problem (2).)

 X Y
 X Y

More on Lossless Join

 The decomposition of R into X and Y is
lossless-join wrt F if and only if the
closure of F contains:

 X Y X, or

 X Y Y

 In particular, the decomposition of R into
UV and R - V is lossless-join if U V
holds over R.

A B C

1 2 3

4 5 6

7 2 8

1 2 8

7 2 3

A B C

1 2 3

4 5 6

7 2 8

A B

1 2

4 5

7 2

B C

2 3

5 6

2 8

Dependency Preserving Decomposition

 Consider CSJDPQV, C is key, JP C and SD P.

 BCNF decomposition: CSJDQV and SDP

 Problem: Checking JP C requires a join!

 Dependency preserving decomposition (Intuitive):

 If R is decomposed into X, Y and Z, and we enforce the FDs that hold on X, on
Y and on Z, then all FDs that were given to hold on R must also hold. (Avoids
Problem (3).)

 Projection of set of FDs F: If R is decomposed into X, ... projection of F
onto X (denoted FX) is the set of FDs U V in F+ (closure of F) such
that U, V are in X.

Dependency Preserving Decompositions
(Contd.)

 Decomposition of R into X and Y is dependency preserving if (FX union
FY)

+ = F +

 i.e., if we consider only dependencies in the closure F + that can be checked in
X without considering Y, and in Y without considering X, these imply all
dependencies in F +.

 Important to consider F +, not F, in this definition:

 ABC, A B, B C, C A, decomposed into AB and BC.

 Is this dependency preserving? Is C A preserved?????

 Dependency preserving does not imply lossless join:

 ABC, A B, decomposed into AB and BC.

 And vice-versa! (Example?)

Decomposition into BCNF

 Consider relation R with FDs F. If X Y violates BCNF, decompose R
into R - Y and XY.

 Repeated application of this idea will give us a collection of relations that are in
BCNF; lossless join decomposition, and guaranteed to terminate.

 e.g., CSJDPQV, key C, JP C, SD P, J S

 To deal with SD P, decompose into SDP, CSJDQV.

 To deal with J S, decompose CSJDQV into JS and CJDQV

 In general, several dependencies may cause violation of BCNF. The order
in which we ``deal with’’ them could lead to very different sets of
relations!

BCNF and Dependency
Preservation

 In general, there may not be a dependency preserving decomposition
into BCNF.

 e.g., CSZ, CS Z, Z C

 Can’t decompose while preserving 1st FD; not in BCNF.

 Similarly, decomposition of CSJDQV into SDP, JS and CJDQV is not
dependency preserving (w.r.t. the FDs JP C, SD P and J
S).

 However, it is a lossless join decomposition.

 In this case, adding JPC to the collection of relations gives us a dependency
preserving decomposition.

 JPC tuples stored only for checking FD! (Redundancy!)

