
Course Name:
Database Management
Systems

Lecture 15
Topics to be covered

 Functional Dependencies

The Evils of Redundancy

 Redundancy is at the root of several problems associated with relational
schemas:

 redundant storage, insert/delete/update anomalies

 Integrity constraints, in particular functional dependencies, can be used
to identify schemas with such problems and to suggest refinements.

 Main refinement technique: decomposition (replacing ABCD with, say,
AB and BCD, or ACD and ABD).

 Decomposition should be used judiciously:

 Is there reason to decompose a relation?

 What problems (if any) does the decomposition cause?

INTRODUCTION TO SCHEMA REFINEMENT

Problems Caused by Redundancy

Storing the same information redundantly, that is, in
more than one place within a database, can lead to several
problems:

Redundant storage: Some information is stored
repeatedly.

Update anomalies: If one copy of such repeated data is
updated, an inconsistency

is created unless all copies are similarly updated.

Insertion anomalies: It may not be possible to store
some information unless

some other information is stored as well.

Deletion anomalies: It may not be possible to delete
some information without

losing some other information as well.

Consider a relation obtained by translating a
variant of the Hourly Emps entity set

Ex: Hourly Emps(ssn, name, lot, rating, hourly
wages, hours worked)

The key for Hourly Emps is ssn. In addition,
suppose that the hourly wages attribute

is determined by the rating attribute. That is,
for a given rating value, there is only

one permissible hourly wages value. This IC
is an example of a functional dependency.

It leads to possible redundancy in the
relation Hourly Emps

Use of Decompositions
 Intuitively, redundancy arises when a relational
schema forces an association between attributes that
is not natural.

Functional dependencies (ICs) can be used to identify
such situations and to suggest revetments to the
schema.

The essential idea is that many problems arising from
redundancy can be addressed by replacing a relation
with a collection of smaller relations.

Each of the smaller relations contains a subset of the
attributes of the original relation.

We refer to this process as decomposition of the
larger relation into the smaller relations

We can deal with the redundancy in Hourly Emps by decomposing
it into two relations:

Hourly Emps2(ssn, name, lot, rating, hours worked)

Wages(rating, hourly wages)

rating hourly wages

8 10

5 7

ssn name lot rating
hours worked

123-22-3666

Attishoo 48 8 40

231-31-5368

Smiley 22 8 30

131-24-3650

Smethurst

35 5 30

434-26-3751

Guldu

35 5 32

612-67-4134

Madayan

35 8 40

Problems Related to Decomposition

 Unless we are careful, decomposing a relation schema
can create more problems than it solves.

 Two important questions must be asked repeatedly:

 1. Do we need to decompose a relation?

 2. What problems (if any) does a given decomposition
cause?

 To help with the rst question, several normal forms
have been proposed for relations.

 If a relation schema is in one of these normal forms,
we know that certain kinds of

 problems cannot arise. Considering the n

Functional Dependencies (FDs)

 A functional dependency X Y holds over relation R if, for every
allowable instance r of R:

 t1 r, t2 r, (t1) = (t2) implies (t1) = (t2)

 i.e., given two tuples in r, if the X values agree, then the Y values must also
agree. (X and Y are sets of attributes.)

 An FD is a statement about all allowable relations.

 Must be identified based on semantics of application.

 Given some allowable instance r1 of R, we can check if it violates some FD f,
but we cannot tell if f holds over R!

 K is a candidate key for R means that K R

 However, K R does not require K to be minimal!

 X X
 Y Y

Example: Constraints on Entity Set

 Consider relation obtained from Hourly_Emps:

 Hourly_Emps (ssn, name, lot, rating, hrly_wages, hrs_worked)

 Notation: We will denote this relation schema by listing the attributes:
SNLRWH

 This is really the set of attributes {S,N,L,R,W,H}.

 Sometimes, we will refer to all attributes of a relation by using the relation
name. (e.g., Hourly_Emps for SNLRWH)

 Some FDs on Hourly_Emps:

 ssn is the key: S SNLRWH

 rating determines hrly_wages: R W

Example (Contd.)

 Problems due to R W :

 Update anomaly: Can
we change W in just
the 1st tuple of SNLRWH?

 Insertion anomaly: What if
we want to insert an
employee and don’t know the
hourly wage for his rating?

 Deletion anomaly: If we
delete all employees with
rating 5, we lose the
information about the wage
for rating 5!

S N L R W H

123-22-3666 Attishoo 48 8 10 40

231-31-5368 Smiley 22 8 10 30

131-24-3650 Smethurst 35 5 7 30

434-26-3751 Guldu 35 5 7 32

612-67-4134 Madayan 35 8 10 40

S N L R H

123-22-3666 Attishoo 48 8 40

231-31-5368 Smiley 22 8 30

131-24-3650 Smethurst 35 5 30

434-26-3751 Guldu 35 5 32

612-67-4134 Madayan 35 8 40

R W

8 10

5 7Hourly_Emps2

Wages

Constraints on a Relationship Set
 Suppose that we have entity sets Parts, Suppliers,
and Departments, as well as a relationship set
Contracts that involves all of them. We refer to the
schema for Contracts as CQPSD. A contract with
contract id

 C species that a supplier S will supply some
quantity Q of a part P to a department D.

We might have a policy that a department
purchases at most one part from any given
supplier.

 Thus, if there are several contracts between the
same supplier and department,

 we know that the same part must be involved in all
of them. This constraint is an FD, DS ! P.

Reasoning About FDs

 Given some FDs, we can usually infer additional FDs:

 ssn did, did lot implies ssn lot

 An FD f is implied by a set of FDs F if f holds whenever all FDs in F hold.

 = closure of F is the set of all FDs that are implied by F.

 Armstrong’s Axioms (X, Y, Z are sets of attributes):

 Reflexivity: If X Y, then Y X

 Augmentation: If X Y, then XZ YZ for any Z

 Transitivity: If X Y and Y Z, then X Z

 These are sound and complete inference rules for FDs!

F

Reasoning About FDs (Contd.)
 Couple of additional rules (that follow from AA):

 Union: If X Y and X Z, then X YZ

 Decomposition: If X YZ, then X Y and X Z

 Example: Contracts(cid,sid,jid,did,pid,qty,value), and:

 C is the key: C CSJDPQV

 Project purchases each part using single contract:

 JP C

 Dept purchases at most one part from a supplier: S

 D P

 JP C, C CSJDPQV imply JP CSJDPQV

 SD P implies SDJ JP

 SDJ JP, JP CSJDPQV imply SDJ CSJDPQV

Reasoning About FDs (Contd.)

 Computing the closure of a set of FDs can be expensive. (Size of closure
is exponential in # attrs!)

 Typically, we just want to check if a given FD X Y is in the closure of a
set of FDs F. An efficient check:

 Compute attribute closure of X (denoted) wrt F:

 Set of all attributes A such that X A is in

 There is a linear time algorithm to compute this.

 Check if Y is in

 Does F = {A B, B C, C D E } imply A E?

 i.e, is A E in the closure ? Equivalently, is E in ?

X

X

F

AF

Closure of a Set of FDs
 The set of all FDs implied by a given set F of FDs is

called the closure of F and is denoted as F+.

 An important question is how we can infer, or
compute, the closure of a given set F of FDs.

 The following three rules, called Armstrong's
Axioms, can be applied repeatedly to infer all FDs
implied by a set F of FDs.

 We use X, Y, and Z to denote sets of attributes over a
relation schema R:

Closure of a Set of FDs
 Reflexivity: If X Y, then X !Y.

 Augmentation: If X ! Y, then XZ ! YZ for any Z.

 Transitivity: If X ! Y and Y ! Z, then X ! Z.

 Armstrong's Axioms are sound in that they generate
only FDs in F+ when applied to a set F of FDs.

 They are complete in that repeated application of these
rules will generate all FDs in the closure F+.

 It is convenient to use some additional rules while
reasoning about F+:

 Union: If X ! Y and X ! Z, then X !YZ.

 Decomposition: If X ! YZ, then X !Y and X ! Z.

 These additional rules are not essential; their soundness
can be proved using Armstrong's Axioms.

Attribute Closure
 If we just want to check whether a given dependency, say, X → Y,

is in the closure of a set F of FDs,

 we can do so eciently without computing F+. We rst compute the
attribute closure X+ with respect to F,

 which is the set of attributes A such that X → A can be inferred

using the Armstrong Axioms.

 The algorithm for computing the attribute closure of a set X of
attributes is

 closure = X;

 repeat until there is no change: {

 if there is an FD U → V in F such that U subset of closure,

 then set closure = closure union of V

 }

