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Lecture 15 
Topics to be covered 

 Functional Dependencies 



The Evils of Redundancy 

 Redundancy is at the root of several problems associated with relational 
schemas: 

 redundant storage, insert/delete/update anomalies 

 Integrity constraints, in particular functional dependencies, can be used 
to identify schemas with such problems and to suggest refinements. 

 Main refinement technique:  decomposition (replacing ABCD with, say, 
AB and BCD, or ACD and ABD). 

 Decomposition should be used judiciously: 

 Is there reason to decompose a relation? 

 What problems (if any) does the decomposition cause? 



INTRODUCTION TO SCHEMA REFINEMENT 
 

Problems Caused by Redundancy 

Storing the same information redundantly, that is, in 
more than one place within a database, can lead to several 
problems: 

Redundant storage: Some information is stored 
repeatedly. 

Update anomalies: If one copy of such repeated data is 
updated, an inconsistency 

is created unless all copies are similarly updated. 

Insertion anomalies: It may not be possible to store 
some information unless 

some other information is stored as well. 

Deletion anomalies: It may not be possible to delete 
some information without 

 



losing some other information as well. 

Consider a relation obtained by translating a 
variant of the Hourly Emps entity set 

 

Ex: Hourly Emps(ssn, name, lot, rating, hourly 
wages, hours worked) 

 

The key for Hourly Emps is ssn. In addition, 
suppose that the hourly wages attribute 

is determined by the rating attribute. That is, 
for a given rating value, there is only 

one permissible hourly wages value. This IC 
is an example of a functional dependency. 

It leads to possible redundancy in the 
relation Hourly Emps 

 

 



Use of Decompositions 
 Intuitively, redundancy arises when a relational 
schema forces an association between attributes that 
is not natural.  

Functional dependencies (ICs) can be used to identify 
such situations and to suggest revetments to the 
schema. 

The essential idea is that many problems arising from 
redundancy can be addressed by replacing a relation 
with a collection of smaller relations. 

Each of the smaller relations contains a subset of the 
attributes of the original relation. 

We refer to this process as decomposition of the 
larger relation into the smaller relations 

 

 



We can deal with the redundancy in Hourly Emps by decomposing 
it into two relations: 

Hourly Emps2(ssn, name, lot, rating, hours worked) 

Wages(rating, hourly wages) 

 

rating hourly wages 

8   10 

5  7 



ssn name lot rating 
hours worked 

 

123-22-3666 

 
Attishoo 48 8 40 

231-31-5368 

 
Smiley 22 8 30 

131-24-3650 

 

Smethurst 

 
35 5 30 

434-26-3751 

 

Guldu 

 
35 5 32 

612-67-4134 

 

Madayan 

 
35 8 40 



Problems Related to Decomposition 
 

 Unless we are careful, decomposing a relation schema 
can create more problems than it solves. 

  Two important questions must be asked repeatedly: 

 1. Do we need to decompose a relation? 

 2. What problems (if any) does a given decomposition 
cause? 

 To help with the rst question, several normal forms 
have been proposed for relations. 

 If a relation schema is in one of these normal forms, 
we know that certain kinds of 

 problems cannot arise. Considering the n 

 

 



Functional Dependencies (FDs) 

 A functional dependency X      Y holds over relation R if, for every 
allowable instance r of R: 

 t1    r,  t2    r,        (t1) =        (t2)  implies        (t1) =        (t2) 

 i.e., given two tuples in r, if the X values agree, then the Y values must also 
agree.  (X and Y are sets of attributes.) 

 An FD is a statement about all allowable relations. 

 Must be identified based on semantics of application. 

 Given some allowable instance r1 of R, we can check if it violates some FD f, 
but we cannot tell if f holds over R! 

 K is a candidate key for R means that K      R 

 However, K      R does not require K to be minimal! 



   X  X
 Y Y






Example:  Constraints on Entity Set 

 Consider relation obtained from Hourly_Emps: 

 Hourly_Emps (ssn, name, lot, rating, hrly_wages, hrs_worked) 

 Notation:  We will denote this relation schema by listing the attributes:   
SNLRWH 

 This is really the set of attributes {S,N,L,R,W,H}. 

 Sometimes, we will refer to all attributes of a relation by using the relation 
name.  (e.g., Hourly_Emps for SNLRWH) 

 Some FDs on Hourly_Emps: 

 ssn is the key:    S        SNLRWH  

 rating determines hrly_wages:    R       W 






Example (Contd.) 

 Problems due to R        W : 

 Update anomaly:  Can            
we change W in just             
the 1st  tuple of SNLRWH? 

 Insertion anomaly:  What if 
we want to insert an 
employee and don’t know the 
hourly wage for his rating? 

 Deletion anomaly: If we 
delete all employees with 
rating 5, we lose the 
information about the wage 
for rating 5!   



S N L R W H

123-22-3666 Attishoo 48 8 10 40

231-31-5368 Smiley 22 8 10 30

131-24-3650 Smethurst 35 5 7 30

434-26-3751 Guldu 35 5 7 32

612-67-4134 Madayan 35 8 10 40

S N L R H

123-22-3666 Attishoo 48 8 40

231-31-5368 Smiley 22 8 30

131-24-3650 Smethurst 35 5 30

434-26-3751 Guldu 35 5 32

612-67-4134 Madayan 35 8 40

R W

8 10

5 7Hourly_Emps2 

Wages 



Constraints on a Relationship Set 
  Suppose that we have entity sets Parts, Suppliers, 
and Departments, as well as a relationship set 
Contracts that involves all of them. We refer to the 
schema for Contracts as CQPSD. A contract with 
contract id 

 C species that a supplier S will supply some 
quantity Q of a part P to a department D. 

We might have a policy that a department 
purchases at most one part from any given 
supplier.  

 Thus, if there are several contracts between the 
same supplier and department, 

 we know that the same part must be involved in all 
of them. This constraint is an FD, DS ! P. 

 

 



Reasoning About FDs 

 Given some FDs, we can usually infer additional FDs: 

 ssn       did,  did        lot    implies    ssn        lot 

 An FD f is implied by a set of FDs F if f  holds whenever all FDs in F hold. 

       = closure of F is the set of all FDs that are implied by F. 

 Armstrong’s Axioms (X, Y, Z are sets of attributes): 

 Reflexivity:  If  X       Y,  then   Y        X  

 Augmentation:  If  X       Y,  then   XZ         YZ   for any Z 

 Transitivity:  If  X       Y  and  Y        Z,  then   X        Z 

 These are sound and complete inference rules for FDs! 

  

F 

 
 

  



Reasoning About FDs  (Contd.) 
 Couple of additional rules (that follow from AA): 

 Union:   If X       Y  and  X        Z,   then  X          YZ 

 Decomposition:   If X         YZ,   then  X        Y  and  X        Z 

 Example:    Contracts(cid,sid,jid,did,pid,qty,value), and: 

 C is the key:   C         CSJDPQV 

 Project purchases each part using single contract:   

 JP        C 

 Dept purchases at most one part from a supplier:  S 

 D        P 

 JP      C,  C       CSJDPQV   imply   JP       CSJDPQV 

 SD      P   implies   SDJ      JP 

 SDJ      JP,   JP      CSJDPQV   imply   SDJ       CSJDPQV 

  
  






  

 
  



Reasoning About FDs  (Contd.) 

 Computing the closure of a set of FDs can be expensive.  (Size of closure 
is exponential in # attrs!) 

 Typically, we just want to check if a given FD X     Y is in the closure of a 
set of FDs F.  An efficient check: 

 Compute attribute closure of X (denoted        ) wrt F: 

 Set of all attributes A such that X       A is in 

 There is a linear time algorithm to compute this.  

 Check if Y is in 

 Does F = {A      B,  B      C,  C D      E }  imply  A      E? 

 i.e,  is  A      E  in the closure       ?  Equivalently, is E in       ?  



X



X

F

AF
   




Closure of a Set of FDs 
  The set of all FDs implied by a given set F of FDs is 

called the closure of F and is denoted as F+.  

 

 An important question is how we can infer, or 
compute, the closure of a given set F of FDs. 

 

 The following three rules, called Armstrong's 
Axioms, can be applied repeatedly to infer all FDs 
implied by a set F of FDs. 

 

 We use X, Y, and Z to denote sets of attributes over a 
relation schema R: 

 

 

 



Closure of a Set of FDs 
 Reflexivity: If X  Y, then X !Y. 

 Augmentation: If X ! Y, then XZ ! YZ for any Z. 

 Transitivity: If X ! Y and Y ! Z, then X ! Z. 

 Armstrong's Axioms are sound in that they generate 
only FDs in F+ when applied to a set F of FDs.  

 They are complete in that repeated application of these 
rules will generate all FDs in the closure F+. 

 It is convenient to use some additional rules while 
reasoning about F+: 

 Union: If X ! Y and X ! Z, then X !YZ. 

 Decomposition: If X ! YZ, then X !Y and X ! Z. 

 These additional rules are not essential; their soundness 
can be proved using Armstrong's Axioms. 

 

 

 



Attribute Closure 
  If we just want to check whether a given dependency, say, X → Y, 

is in the closure of a set F of FDs,  

 we can do so eciently without computing F+. We rst compute the 
attribute closure X+ with respect to F, 

  which is the set of attributes A such that X → A can be inferred 

using the Armstrong Axioms.  

 The algorithm for computing the attribute closure of a set X of 
attributes is 

 closure = X; 

    repeat until there is no change: { 

     if there is an FD U → V in F such that U subset of  closure, 

    then set closure = closure union of  V 

     } 

 

 


