
Course Name:
Database Management
Systems

Lecture 13 and 14
Topics to be covered

 B Trees and Hashing

 Introduction

 B+-Tree Node Structure

Queries on B+-Trees

 Insertion and deletion

 B Trees

 Advantages of B Tree over B+ Tree

 Hashing

 Static and Dynamic hashing

2

B+-Tree Index Files

 Disadvantage of indexed-sequential files

 performance degrades as file grows, since many
overflow blocks get created.

 Periodic reorganization of entire file is required.

 Advantage of B+-tree index files:

 automatically reorganizes itself with small, local,
changes, in the face of insertions and deletions.

 Reorganization of entire file is not required to
maintain performance.

 (Minor) disadvantage of B+-trees:

 extra insertion and deletion overhead, space
overhead.

 Advantages of B+-trees outweigh disadvantages

 B+-trees are used extensively

B+-tree indices are an alternative to indexed-sequential files.

B+-Tree Index Files (Cont.)

 All paths from root to leaf are of the same length

 Each node that is not a root or a leaf has between n/2
and n children.

 A leaf node has between (n–1)/2 and n–1 values

 Special cases:

 If the root is not a leaf, it has at least 2 children.

 If the root is a leaf (that is, there are no other nodes in
the tree), it can have between 0 and (n–1) values.

A B+-tree is a rooted tree satisfying the following properties:

B+-Tree Node Structure
 Typical node

 Ki are the search-key values

 Pi are pointers to children (for non-leaf nodes)
or pointers to records or buckets of records (for
leaf nodes).

 The search-keys in a node are ordered

 K1 < K2 < K3 < . . . < Kn–1

Leaf Nodes in B+-Trees

 For i = 1, 2, . . ., n–1, pointer Pi either points to a file
record with search-key value Ki, or to a bucket of
pointers to file records, each record having search-key
value Ki. Only need bucket structure if search-key does
not form a primary key.

 If Li, Lj are leaf nodes and i < j, Li’s search-key values
are less than Lj’s search-key values

 Pn points to next leaf node in search-key order

Properties of a leaf node:

Non-Leaf Nodes in B+-Trees

 Non leaf nodes form a multi-level sparse index on the leaf
nodes. For a non-leaf node with m pointers:

 All the search-keys in the subtree to which P1 points
are less than K1

 For 2  i  n – 1, all the search-keys in the subtree to
which Pi points have values greater than or equal to Ki–

1 and less than Ki

 All the search-keys in the subtree to which Pn points
have values greater than or equal to Kn–1

Example of a B+-tree

B+-tree for account file (n = 3)

Example of B+-tree

 Leaf nodes must have between 2 and 4 values
((n–1)/2 and n –1, with n = 5).

 Non-leaf nodes other than root must have
between 3 and 5 children ((n/2 and n with n
=5).

 Root must have at least 2 children.

B+-tree for account file (n = 5)

Observations about B+-trees

 Since the inter-node connections are done by pointers,
“logically” close blocks need not be “physically” close.

 The non-leaf levels of the B+-tree form a hierarchy of sparse
indices.

 The B+-tree contains a relatively small number of levels

Level below root has at least 2* n/2 values

Next level has at least 2* n/2 * n/2 values

 .. etc.

 If there are K search-key values in the file, the tree
height is no more than  logn/2(K)

 thus searches can be conducted efficiently.

 Insertions and deletions to the main file can be handled
efficiently, as the index can be restructured in logarithmic
time (as we shall see).

Queries on B+-Trees

 Find all records with a search-key value of k.

1. N=root

2. Repeat

1. Examine N for the smallest search-key value > k.

2. If such a value exists, assume it is Ki. Then set N = Pi

3. Otherwise k  Kn–1. Set N = Pn

Until N is a leaf node

3. If for some i, key Ki = k follow pointer Pi to the desired record or
bucket.

4. Else no record with search-key value k exists.

Queries on B+-Trees (Cont.)

 If there are K search-key values in the file, the height
of the tree is no more than logn/2(K).

 A node is generally the same size as a disk block,
typically 4 kilobytes

 and n is typically around 100 (40 bytes per index
entry).

 With 1 million search key values and n = 100

 at most log50(1,000,000) = 4 nodes are accessed
in a lookup.

 Contrast this with a balanced binary tree with 1 million
search key values — around 20 nodes are accessed in
a lookup

 above difference is significant since every node
access may need a disk I/O, costing around 20
milliseconds

Updates on B+-Trees: Insertion

1. Find the leaf node in which the search-key value
would appear

2. If the search-key value is already present in the leaf
node

1. Add record to the file

3. If the search-key value is not present, then

1. add the record to the main file (and create a
bucket if necessary)

2. If there is room in the leaf node, insert (key-
value, pointer) pair in the leaf node

3. Otherwise, split the node (along with the new
(key-value, pointer) entry) as discussed in the
next slide.

 Splitting a leaf node:

 take the n (search-key value, pointer) pairs (including
the one being inserted) in sorted order. Place the first
n/2 in the original node, and the rest in a new node.

 let the new node be p, and let k be the least key value
in p. Insert (k,p) in the parent of the node being split.

 If the parent is full, split it and propagate the split
further up.

 Splitting of nodes proceeds upwards till a node that is not
full is found.

 In the worst case the root node may be split increasing
the height of the tree by 1.

Result of splitting node containing Brighton and Downtown on
inserting Clearview
Next step: insert entry with (Downtown,pointer-to-new-node) into
parent

Updates on B+-Trees: Insertion
(Cont.)

B+-Tree before and after insertion of “Clearview”

Redwood

Insertion in B+-Trees (Cont.)

 Splitting a non-leaf node: when inserting (k,p) into an
already full internal node N

 Copy N to an in-memory area M with space for n+1
pointers and n keys

 Insert (k,p) into M

 Copy P1,K1, …, K n/2-1,P n/2 from M back into node
N

 Copy Pn/2+1,K n/2+1,…,Kn,Pn+1 from M into newly
allocated node N’

 Insert (K n/2,N’) into parent N

Downtown Mianus Perryridge Downtown

 Mianus

Updates on B+-Trees: Deletion

 Find the record to be deleted, and remove it from the
main file and from the bucket (if present)

 Remove (search-key value, pointer) from the leaf node if
there is no bucket or if the bucket has become empty

 If the node has too few entries due to the removal, and
the entries in the node and a sibling fit into a single node,
then merge siblings:

 Insert all the search-key values in the two nodes into a
single node (the one on the left), and delete the other
node.

 Delete the pair (Ki–1, Pi), where Pi is the pointer to the
deleted node, from its parent, recursively using the
above procedure.

Updates on B+-Trees: Deletion

 Otherwise, if the node has too few entries due to the
removal, but the entries in the node and a sibling do
not fit into a single node, then redistribute
pointers:

 Redistribute the pointers between the node and a
sibling such that both have more than the
minimum number of entries.

 Update the corresponding search-key value in the
parent of the node.

 The node deletions may cascade upwards till a node
which has n/2 or more pointers is found.

 If the root node has only one pointer after deletion, it
is deleted and the sole child becomes the root.

Examples of B+-Tree Deletion

 Deleting “Downtown” causes merging of under-full leaves

 leaf node can become empty only for n=3!

Before and after deleting “Downtown”

Examples of B+-Tree Deletion (Cont.)

Before and After deletion of “Perryridge” from
result of previous example

 Leaf with “Perryridge” becomes underfull (actually empty, in this special case) and
merged with its sibling.

 As a result “Perryridge” node’s parent became underfull, and was merged with its
sibling

 Value separating two nodes (at parent) moves into merged node

 Entry deleted from parent

 Root node then has only one child, and is deleted

Example of B+-tree Deletion (Cont.)

 Parent of leaf containing Perryridge became underfull, and
borrowed a pointer from its left sibling

 Search-key value in the parent’s parent changes as a result

Before and after deletion of “Perryridge” from earlier
example

B-Tree Index Files

 Nonleaf node – pointers Bi are the bucket or file
record pointers.

Similar to B+-tree, but B-tree allows search-key
values to appear only once; eliminates redundant
storage of search keys.

Search keys in nonleaf nodes appear nowhere else
in the B-tree; an additional pointer field for each
search key in a nonleaf node must be included.

Generalized B-tree leaf node

B-Tree Index File Example

B-tree (above) and B+-tree (below) on same data

B-Tree Index Files (Cont.)

 Advantages of B-Tree indices:

 May use less tree nodes than a corresponding B+-Tree.

 Sometimes possible to find search-key value before
reaching leaf node.

 Disadvantages of B-Tree indices:

 Only small fraction of all search-key values are found early

 Non-leaf nodes are larger, so fan-out is reduced. Thus, B-
Trees typically have greater depth than corresponding B+-
Tree

 Insertion and deletion more complicated than in B+-Trees

 Implementation is harder than B+-Trees.

 Typically, advantages of B-Trees do not out weigh
disadvantages.

Hashing

Static Hashing

 A bucket is a unit of storage containing one or more
records (a bucket is typically a disk block).

 In a hash file organization we obtain the bucket of a
record directly from its search-key value using a hash
function.

 Hash function h is a function from the set of all search-key
values K to the set of all bucket addresses B.

 Hash function is used to locate records for access, insertion
as well as deletion.

 Records with different search-key values may be mapped
to the same bucket; thus entire bucket has to be searched
sequentially to locate a record.

Example of Hash File Organization

 There are 10 buckets,

 The binary representation of the ith character is assumed to
be the integer i.

 The hash function returns the sum of the binary
representations of the characters modulo 10

 E.g. h(Perryridge) = 5 h(Round Hill) = 3 h(Brighton) = 3

Hash file organization of account file, using branch_name as key
 (See figure in next slide.)

Example of Hash File Organization

Hash file
organization of
account file, using
branch_name as key
(see previous slide
for details).

Hash Functions

 Worst hash function maps all search-key values to
the same bucket; this makes access time
proportional to the number of search-key values in
the file.

 An ideal hash function is uniform, i.e., each
bucket is assigned the same number of search-key
values from the set of all possible values.

 Ideal hash function is random, so each bucket will
have the same number of records assigned to it
irrespective of the actual distribution of search-key
values in the file.

Handling of Bucket Overflows

 Bucket overflow can occur because of

 Insufficient buckets

 Skew in distribution of records. This can occur due to two
reasons:

 multiple records have same search-key value

 chosen hash function produces non-uniform distribution of key values

 Although the probability of bucket overflow can be reduced,
it cannot be eliminated; it is handled by using overflow
buckets.

Handling of Bucket Overflows (Cont.)

 Overflow chaining – the overflow buckets of a given
bucket are chained together in a linked list.

 Above scheme is called closed hashing.

 An alternative, called open hashing, which does not
use overflow buckets, is not suitable for database
applications.

Hash Indices

 Hashing can be used not only for file organization, but
also for index-structure creation.

 A hash index organizes the search keys, with their
associated record pointers, into a hash file structure.

 Strictly speaking, hash indices are always secondary
indices

 if the file itself is organized using hashing, a separate
primary hash index on it using the same search-key is
unnecessary.

 However, we use the term hash index to refer to both
secondary index structures and hash organized files.

Example of Hash Index

Deficiencies of Static Hashing

 In static hashing, function h maps search-key values to a fixed
set of B of bucket addresses. Databases grow or shrink with
time.

 If initial number of buckets is too small, and file grows,
performance will degrade due to too much overflows.

 If space is allocated for anticipated growth, a significant amount of
space will be wasted initially (and buckets will be underfull).

 If database shrinks, again space will be wasted.

 One solution: periodic re-organization of the file with a new
hash function

 Expensive, disrupts normal operations

 Better solution: allow the number of buckets to be modified
dynamically.

Dynamic Hashing

 Good for database that grows and shrinks in size

 Allows the hash function to be modified dynamically

 Extendable hashing – one form of dynamic hashing

 Hash function generates values over a large range — typically b-bit
integers, with b = 32.

 At any time use only a prefix of the hash function to index into a table
of bucket addresses.

 Let the length of the prefix be i bits, 0  i  32.

 Bucket address table size = 2
i. Initially i = 0

 Value of i grows and shrinks as the size of the database grows and shrinks.

 Multiple entries in the bucket address table may point to a bucket
(why?)

 Thus, actual number of buckets is < 2i
 The number of buckets also changes dynamically due to coalescing and

splitting of buckets.

General Extendable Hash Structure

In this structure, i2 = i3 = i, whereas i1 = i – 1
(see next slide for details)

Extendable Hashing vs. Other
Schemes

 Benefits of extendable hashing:

 Hash performance does not degrade with growth of file

 Minimal space overhead

 Disadvantages of extendable hashing

 Extra level of indirection to find desired record

 Bucket address table may itself become very big (larger than
memory)

 Cannot allocate very large contiguous areas on disk either

 Solution: B+-tree file organization to store bucket address table

 Changing size of bucket address table is an expensive operation

 Linear hashing is an alternative mechanism

 Allows incremental growth of its directory (equivalent to bucket
address table)

 At the cost of more bucket overflows

Comparison of Ordered Indexing and Hashing

 Cost of periodic re-organization

 Relative frequency of insertions and deletions

 Is it desirable to optimize average access time at the
expense of worst-case access time?

 Expected type of queries:

 Hashing is generally better at retrieving records having a
specified value of the key.

 If range queries are common, ordered indices are to be
preferred

 In practice:

 PostgreSQL supports hash indices, but discourages use due to
poor performance

 Oracle supports static hash organization, but not hash indices

 SQLServer supports only B+-trees

