
Course Name:
Database Management
Systems

Lecture 13 and 14
Topics to be covered

 B Trees and Hashing

 Introduction

 B+-Tree Node Structure

Queries on B+-Trees

 Insertion and deletion

 B Trees

 Advantages of B Tree over B+ Tree

 Hashing

 Static and Dynamic hashing

2

B+-Tree Index Files

 Disadvantage of indexed-sequential files

 performance degrades as file grows, since many
overflow blocks get created.

 Periodic reorganization of entire file is required.

 Advantage of B+-tree index files:

 automatically reorganizes itself with small, local,
changes, in the face of insertions and deletions.

 Reorganization of entire file is not required to
maintain performance.

 (Minor) disadvantage of B+-trees:

 extra insertion and deletion overhead, space
overhead.

 Advantages of B+-trees outweigh disadvantages

 B+-trees are used extensively

B+-tree indices are an alternative to indexed-sequential files.

B+-Tree Index Files (Cont.)

 All paths from root to leaf are of the same length

 Each node that is not a root or a leaf has between n/2
and n children.

 A leaf node has between (n–1)/2 and n–1 values

 Special cases:

 If the root is not a leaf, it has at least 2 children.

 If the root is a leaf (that is, there are no other nodes in
the tree), it can have between 0 and (n–1) values.

A B+-tree is a rooted tree satisfying the following properties:

B+-Tree Node Structure
 Typical node

 Ki are the search-key values

 Pi are pointers to children (for non-leaf nodes)
or pointers to records or buckets of records (for
leaf nodes).

 The search-keys in a node are ordered

 K1 < K2 < K3 < . . . < Kn–1

Leaf Nodes in B+-Trees

 For i = 1, 2, . . ., n–1, pointer Pi either points to a file
record with search-key value Ki, or to a bucket of
pointers to file records, each record having search-key
value Ki. Only need bucket structure if search-key does
not form a primary key.

 If Li, Lj are leaf nodes and i < j, Li’s search-key values
are less than Lj’s search-key values

 Pn points to next leaf node in search-key order

Properties of a leaf node:

Non-Leaf Nodes in B+-Trees

 Non leaf nodes form a multi-level sparse index on the leaf
nodes. For a non-leaf node with m pointers:

 All the search-keys in the subtree to which P1 points
are less than K1

 For 2 i n – 1, all the search-keys in the subtree to
which Pi points have values greater than or equal to Ki–

1 and less than Ki

 All the search-keys in the subtree to which Pn points
have values greater than or equal to Kn–1

Example of a B+-tree

B+-tree for account file (n = 3)

Example of B+-tree

 Leaf nodes must have between 2 and 4 values
((n–1)/2 and n –1, with n = 5).

 Non-leaf nodes other than root must have
between 3 and 5 children ((n/2 and n with n
=5).

 Root must have at least 2 children.

B+-tree for account file (n = 5)

Observations about B+-trees

 Since the inter-node connections are done by pointers,
“logically” close blocks need not be “physically” close.

 The non-leaf levels of the B+-tree form a hierarchy of sparse
indices.

 The B+-tree contains a relatively small number of levels

Level below root has at least 2* n/2 values

Next level has at least 2* n/2 * n/2 values

 .. etc.

 If there are K search-key values in the file, the tree
height is no more than logn/2(K)

 thus searches can be conducted efficiently.

 Insertions and deletions to the main file can be handled
efficiently, as the index can be restructured in logarithmic
time (as we shall see).

Queries on B+-Trees

 Find all records with a search-key value of k.

1. N=root

2. Repeat

1. Examine N for the smallest search-key value > k.

2. If such a value exists, assume it is Ki. Then set N = Pi

3. Otherwise k Kn–1. Set N = Pn

Until N is a leaf node

3. If for some i, key Ki = k follow pointer Pi to the desired record or
bucket.

4. Else no record with search-key value k exists.

Queries on B+-Trees (Cont.)

 If there are K search-key values in the file, the height
of the tree is no more than logn/2(K).

 A node is generally the same size as a disk block,
typically 4 kilobytes

 and n is typically around 100 (40 bytes per index
entry).

 With 1 million search key values and n = 100

 at most log50(1,000,000) = 4 nodes are accessed
in a lookup.

 Contrast this with a balanced binary tree with 1 million
search key values — around 20 nodes are accessed in
a lookup

 above difference is significant since every node
access may need a disk I/O, costing around 20
milliseconds

Updates on B+-Trees: Insertion

1. Find the leaf node in which the search-key value
would appear

2. If the search-key value is already present in the leaf
node

1. Add record to the file

3. If the search-key value is not present, then

1. add the record to the main file (and create a
bucket if necessary)

2. If there is room in the leaf node, insert (key-
value, pointer) pair in the leaf node

3. Otherwise, split the node (along with the new
(key-value, pointer) entry) as discussed in the
next slide.

 Splitting a leaf node:

 take the n (search-key value, pointer) pairs (including
the one being inserted) in sorted order. Place the first
n/2 in the original node, and the rest in a new node.

 let the new node be p, and let k be the least key value
in p. Insert (k,p) in the parent of the node being split.

 If the parent is full, split it and propagate the split
further up.

 Splitting of nodes proceeds upwards till a node that is not
full is found.

 In the worst case the root node may be split increasing
the height of the tree by 1.

Result of splitting node containing Brighton and Downtown on
inserting Clearview
Next step: insert entry with (Downtown,pointer-to-new-node) into
parent

Updates on B+-Trees: Insertion
(Cont.)

B+-Tree before and after insertion of “Clearview”

Redwood

Insertion in B+-Trees (Cont.)

 Splitting a non-leaf node: when inserting (k,p) into an
already full internal node N

 Copy N to an in-memory area M with space for n+1
pointers and n keys

 Insert (k,p) into M

 Copy P1,K1, …, K n/2-1,P n/2 from M back into node
N

 Copy Pn/2+1,K n/2+1,…,Kn,Pn+1 from M into newly
allocated node N’

 Insert (K n/2,N’) into parent N

Downtown Mianus Perryridge Downtown

 Mianus

Updates on B+-Trees: Deletion

 Find the record to be deleted, and remove it from the
main file and from the bucket (if present)

 Remove (search-key value, pointer) from the leaf node if
there is no bucket or if the bucket has become empty

 If the node has too few entries due to the removal, and
the entries in the node and a sibling fit into a single node,
then merge siblings:

 Insert all the search-key values in the two nodes into a
single node (the one on the left), and delete the other
node.

 Delete the pair (Ki–1, Pi), where Pi is the pointer to the
deleted node, from its parent, recursively using the
above procedure.

Updates on B+-Trees: Deletion

 Otherwise, if the node has too few entries due to the
removal, but the entries in the node and a sibling do
not fit into a single node, then redistribute
pointers:

 Redistribute the pointers between the node and a
sibling such that both have more than the
minimum number of entries.

 Update the corresponding search-key value in the
parent of the node.

 The node deletions may cascade upwards till a node
which has n/2 or more pointers is found.

 If the root node has only one pointer after deletion, it
is deleted and the sole child becomes the root.

Examples of B+-Tree Deletion

 Deleting “Downtown” causes merging of under-full leaves

 leaf node can become empty only for n=3!

Before and after deleting “Downtown”

Examples of B+-Tree Deletion (Cont.)

Before and After deletion of “Perryridge” from
result of previous example

 Leaf with “Perryridge” becomes underfull (actually empty, in this special case) and
merged with its sibling.

 As a result “Perryridge” node’s parent became underfull, and was merged with its
sibling

 Value separating two nodes (at parent) moves into merged node

 Entry deleted from parent

 Root node then has only one child, and is deleted

Example of B+-tree Deletion (Cont.)

 Parent of leaf containing Perryridge became underfull, and
borrowed a pointer from its left sibling

 Search-key value in the parent’s parent changes as a result

Before and after deletion of “Perryridge” from earlier
example

B-Tree Index Files

 Nonleaf node – pointers Bi are the bucket or file
record pointers.

Similar to B+-tree, but B-tree allows search-key
values to appear only once; eliminates redundant
storage of search keys.

Search keys in nonleaf nodes appear nowhere else
in the B-tree; an additional pointer field for each
search key in a nonleaf node must be included.

Generalized B-tree leaf node

B-Tree Index File Example

B-tree (above) and B+-tree (below) on same data

B-Tree Index Files (Cont.)

 Advantages of B-Tree indices:

 May use less tree nodes than a corresponding B+-Tree.

 Sometimes possible to find search-key value before
reaching leaf node.

 Disadvantages of B-Tree indices:

 Only small fraction of all search-key values are found early

 Non-leaf nodes are larger, so fan-out is reduced. Thus, B-
Trees typically have greater depth than corresponding B+-
Tree

 Insertion and deletion more complicated than in B+-Trees

 Implementation is harder than B+-Trees.

 Typically, advantages of B-Trees do not out weigh
disadvantages.

Hashing

Static Hashing

 A bucket is a unit of storage containing one or more
records (a bucket is typically a disk block).

 In a hash file organization we obtain the bucket of a
record directly from its search-key value using a hash
function.

 Hash function h is a function from the set of all search-key
values K to the set of all bucket addresses B.

 Hash function is used to locate records for access, insertion
as well as deletion.

 Records with different search-key values may be mapped
to the same bucket; thus entire bucket has to be searched
sequentially to locate a record.

Example of Hash File Organization

 There are 10 buckets,

 The binary representation of the ith character is assumed to
be the integer i.

 The hash function returns the sum of the binary
representations of the characters modulo 10

 E.g. h(Perryridge) = 5 h(Round Hill) = 3 h(Brighton) = 3

Hash file organization of account file, using branch_name as key
 (See figure in next slide.)

Example of Hash File Organization

Hash file
organization of
account file, using
branch_name as key
(see previous slide
for details).

Hash Functions

 Worst hash function maps all search-key values to
the same bucket; this makes access time
proportional to the number of search-key values in
the file.

 An ideal hash function is uniform, i.e., each
bucket is assigned the same number of search-key
values from the set of all possible values.

 Ideal hash function is random, so each bucket will
have the same number of records assigned to it
irrespective of the actual distribution of search-key
values in the file.

Handling of Bucket Overflows

 Bucket overflow can occur because of

 Insufficient buckets

 Skew in distribution of records. This can occur due to two
reasons:

 multiple records have same search-key value

 chosen hash function produces non-uniform distribution of key values

 Although the probability of bucket overflow can be reduced,
it cannot be eliminated; it is handled by using overflow
buckets.

Handling of Bucket Overflows (Cont.)

 Overflow chaining – the overflow buckets of a given
bucket are chained together in a linked list.

 Above scheme is called closed hashing.

 An alternative, called open hashing, which does not
use overflow buckets, is not suitable for database
applications.

Hash Indices

 Hashing can be used not only for file organization, but
also for index-structure creation.

 A hash index organizes the search keys, with their
associated record pointers, into a hash file structure.

 Strictly speaking, hash indices are always secondary
indices

 if the file itself is organized using hashing, a separate
primary hash index on it using the same search-key is
unnecessary.

 However, we use the term hash index to refer to both
secondary index structures and hash organized files.

Example of Hash Index

Deficiencies of Static Hashing

 In static hashing, function h maps search-key values to a fixed
set of B of bucket addresses. Databases grow or shrink with
time.

 If initial number of buckets is too small, and file grows,
performance will degrade due to too much overflows.

 If space is allocated for anticipated growth, a significant amount of
space will be wasted initially (and buckets will be underfull).

 If database shrinks, again space will be wasted.

 One solution: periodic re-organization of the file with a new
hash function

 Expensive, disrupts normal operations

 Better solution: allow the number of buckets to be modified
dynamically.

Dynamic Hashing

 Good for database that grows and shrinks in size

 Allows the hash function to be modified dynamically

 Extendable hashing – one form of dynamic hashing

 Hash function generates values over a large range — typically b-bit
integers, with b = 32.

 At any time use only a prefix of the hash function to index into a table
of bucket addresses.

 Let the length of the prefix be i bits, 0 i 32.

 Bucket address table size = 2
i. Initially i = 0

 Value of i grows and shrinks as the size of the database grows and shrinks.

 Multiple entries in the bucket address table may point to a bucket
(why?)

 Thus, actual number of buckets is < 2i
 The number of buckets also changes dynamically due to coalescing and

splitting of buckets.

General Extendable Hash Structure

In this structure, i2 = i3 = i, whereas i1 = i – 1
(see next slide for details)

Extendable Hashing vs. Other
Schemes

 Benefits of extendable hashing:

 Hash performance does not degrade with growth of file

 Minimal space overhead

 Disadvantages of extendable hashing

 Extra level of indirection to find desired record

 Bucket address table may itself become very big (larger than
memory)

 Cannot allocate very large contiguous areas on disk either

 Solution: B+-tree file organization to store bucket address table

 Changing size of bucket address table is an expensive operation

 Linear hashing is an alternative mechanism

 Allows incremental growth of its directory (equivalent to bucket
address table)

 At the cost of more bucket overflows

Comparison of Ordered Indexing and Hashing

 Cost of periodic re-organization

 Relative frequency of insertions and deletions

 Is it desirable to optimize average access time at the
expense of worst-case access time?

 Expected type of queries:

 Hashing is generally better at retrieving records having a
specified value of the key.

 If range queries are common, ordered indices are to be
preferred

 In practice:

 PostgreSQL supports hash indices, but discourages use due to
poor performance

 Oracle supports static hash organization, but not hash indices

 SQLServer supports only B+-trees

