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B+-Tree Index Files 

 Disadvantage of indexed-sequential files 

 performance degrades as file grows, since many 
overflow blocks get created.   

 Periodic reorganization of entire file is required. 

 Advantage of B+-tree index files:   

 automatically reorganizes itself with small, local, 
changes, in the face of insertions and deletions.   

 Reorganization of entire file is not required to 
maintain performance. 

 (Minor) disadvantage of B+-trees:  

 extra insertion and deletion overhead, space 
overhead. 

 Advantages of B+-trees outweigh disadvantages 

 B+-trees are used extensively 

B+-tree indices are an alternative to indexed-sequential files. 



B+-Tree Index Files (Cont.) 

 All paths from root to leaf are of the same length 

 Each node that is not a root or a leaf has between n/2 
and n children. 

 A leaf node has between (n–1)/2 and n–1 values 

 Special cases:  

 If the root is not a leaf, it has at least 2 children. 

 If the root is a leaf (that is, there are no other nodes in 
the tree), it can have between 0 and (n–1) values. 

A B+-tree is a rooted tree satisfying the following properties: 



B+-Tree Node Structure 
 Typical node 

 
 
 

 Ki are the search-key values  

 Pi are pointers to children (for non-leaf nodes) 
or pointers to records or buckets of records (for 
leaf nodes). 

 The search-keys in a node are ordered  

   K1 < K2 < K3 < . . . < Kn–1 

 

 

 



Leaf Nodes in B+-Trees 

 For i = 1, 2, . . ., n–1, pointer Pi either points to a file 
record with search-key value Ki, or to a bucket of 
pointers to file records, each record having search-key 
value Ki.  Only need bucket structure if search-key does 
not form a primary key. 

 If Li, Lj are leaf nodes and i < j, Li’s search-key values 
are less than Lj’s search-key values 

 Pn points to next leaf node in search-key order 

Properties of a leaf node: 



Non-Leaf Nodes in B+-Trees 

 Non leaf nodes form a multi-level sparse index on the leaf 
nodes.  For a non-leaf node with m pointers: 

 All the search-keys in the subtree to which P1 points 
are less than K1 

 For 2  i  n – 1, all the search-keys in the subtree to 
which Pi points have values greater than or equal to Ki–

1 and less than Ki 

 All the search-keys in the subtree to which Pn points 
have values greater than or equal to Kn–1 



Example of a B+-tree 

B+-tree for account file (n = 3) 



Example of B+-tree 

 Leaf nodes must have between 2 and 4 values  
((n–1)/2 and n –1, with n = 5). 

 Non-leaf nodes other than root must have 
between 3 and 5 children ((n/2 and n with n 
=5). 

 Root must have at least 2 children. 

B+-tree for account file (n = 5) 



Observations about B+-trees 

 Since the inter-node connections are done by pointers, 
“logically” close blocks need not be “physically” close. 

 The non-leaf levels of the B+-tree form a hierarchy of sparse 
indices. 

 The B+-tree contains a relatively small number of levels 

Level below root has at least 2* n/2 values 

Next level has at least 2* n/2 * n/2 values 

 .. etc. 

 If there are K search-key values in the file, the tree 
height is no more than  logn/2(K) 

 thus searches can be conducted efficiently. 

 Insertions and deletions to the main file can be handled 
efficiently, as the index can be restructured in logarithmic 
time (as we shall see). 



Queries on B+-Trees 

 Find all records with a search-key value of k. 

1. N=root 

2. Repeat 

1. Examine N for the smallest search-key value > k. 

2. If such a value exists, assume it is Ki.  Then set N = Pi 

3. Otherwise k  Kn–1. Set N = Pn  

Until N is a leaf node 

3. If for some i, key Ki = k  follow pointer Pi  to the desired record or 
bucket.   

4. Else no record with search-key value k exists. 



Queries on B+-Trees (Cont.) 

 If there are K search-key values in the file, the height 
of the tree is no more than logn/2(K). 

 A node is generally the same size as a disk block, 
typically 4 kilobytes 

 and n is typically around 100 (40 bytes per index 
entry). 

 With 1 million search key values and n = 100 

 at most  log50(1,000,000) = 4 nodes are accessed 
in a lookup. 

 Contrast this with a balanced binary tree with 1 million 
search key values — around 20 nodes are accessed in 
a lookup 

 above difference is significant since every node 
access may need a disk I/O, costing around 20 
milliseconds 



Updates on B+-Trees:  Insertion 

1. Find the leaf node in which the search-key value 
would appear 

2. If the search-key value is already present in the leaf 
node 

1. Add record to the file 

3. If the search-key value is not present, then  

1. add the record to the main file (and create a 
bucket if necessary) 

2. If there is room in the leaf node, insert (key-
value, pointer) pair in the leaf node 

3. Otherwise, split the node (along with the new 
(key-value, pointer) entry) as discussed in the 
next slide. 



 Splitting a leaf node: 

 take the n (search-key value, pointer) pairs (including 
the one being inserted) in sorted order.  Place the first 
n/2 in the original node, and the rest in a new node. 

 let the new node be p, and let k be the least key value 
in p.  Insert (k,p) in the parent of the node being split.  

 If the parent is full, split it and propagate the split 
further up. 

 Splitting of nodes proceeds upwards till a node that is not 
full is found.  

 In the worst case the root node may be split increasing 
the height of the tree by 1.  

Result of splitting node containing Brighton and Downtown on 
inserting Clearview 
Next step: insert entry with (Downtown,pointer-to-new-node) into 
parent 



Updates on B+-Trees:  Insertion 
(Cont.) 

B+-Tree before and after insertion of “Clearview” 



Redwood 

Insertion in B+-Trees (Cont.) 

 Splitting a non-leaf node: when inserting (k,p) into an 
already full internal node N 

 Copy N to an in-memory area M with space for n+1 
pointers and n keys 

 Insert (k,p) into M 

 Copy P1,K1, …, K n/2-1,P n/2 from M back into node 
N 

 Copy Pn/2+1,K n/2+1,…,Kn,Pn+1 from M into newly 
allocated node N’ 

 Insert (K n/2,N’) into parent N 

Downtown  Mianus  Perryridge Downtown 

 Mianus       



Updates on B+-Trees: Deletion 

 Find the record to be deleted, and remove it from the 
main file and from the bucket (if present) 

 Remove (search-key value, pointer) from the leaf node if 
there is no bucket or if the bucket has become empty 

 If the node has too few entries due to the removal, and 
the entries in the node and a sibling fit into a single node, 
then merge siblings: 

 Insert all the search-key values in the two nodes into a 
single node (the one on the left), and delete the other 
node. 

 Delete the pair (Ki–1, Pi), where Pi is the pointer to the 
deleted node, from its parent, recursively using the 
above procedure. 



Updates on B+-Trees:  Deletion 

 Otherwise, if the node has too few entries due to the 
removal, but the entries in the node and a sibling do 
not fit into a single node, then redistribute 
pointers: 

 Redistribute the pointers between the node and a 
sibling such that both have more than the 
minimum number of entries. 

 Update the corresponding search-key value in the 
parent of the node. 

 The node deletions may cascade upwards till a node 
which has  n/2 or more pointers is found.   

 If the root node has only one pointer after deletion, it 
is deleted and the sole child becomes the root.  



Examples of B+-Tree Deletion 

 Deleting “Downtown” causes merging of under-full leaves 

  leaf node can become empty only for n=3! 

Before and after deleting “Downtown” 



Examples of B+-Tree Deletion (Cont.) 

Before and After deletion of “Perryridge” from 
result of previous example 



 Leaf with “Perryridge” becomes underfull (actually empty, in this special case) and 
merged with its sibling. 

 As a result “Perryridge” node’s parent became underfull, and was merged with its 
sibling  

 Value separating two nodes (at parent) moves into merged node 

 Entry deleted from parent 

 Root node then has only one child, and is deleted 



Example of B+-tree Deletion (Cont.) 

 Parent  of leaf containing Perryridge became underfull, and 
borrowed a pointer from its left sibling 

 Search-key value in the parent’s parent changes as a result 

Before and after deletion of “Perryridge” from earlier 
example 



B-Tree Index Files 

 Nonleaf node – pointers Bi are the bucket or file 
record pointers. 
 

Similar to B+-tree, but B-tree allows search-key 
values to appear only once; eliminates redundant 
storage of search keys. 

Search keys in nonleaf nodes appear nowhere else 
in the B-tree; an additional pointer field for each 
search key in a nonleaf node must be included. 

Generalized B-tree leaf node 
 
 



B-Tree Index File Example 

B-tree (above) and B+-tree (below) on same data 



B-Tree Index Files (Cont.) 

 Advantages of B-Tree indices: 

 May use less tree nodes than a corresponding B+-Tree. 

 Sometimes possible to find search-key value before 
reaching leaf node. 

 Disadvantages of B-Tree indices: 

 Only small fraction of all search-key values are found early  

 Non-leaf nodes are larger, so fan-out is reduced.  Thus, B-
Trees typically have greater depth than corresponding B+-
Tree 

 Insertion and deletion more complicated than in B+-Trees  

 Implementation is harder than B+-Trees. 

 Typically, advantages of B-Trees do not out weigh 
disadvantages.  



Hashing 



Static Hashing 

 A bucket is a unit of storage containing one or more 
records (a bucket is typically a disk block).  

 In a hash file organization we obtain the bucket of a 
record directly from its search-key value using a hash 
function. 

 Hash function h is a function from the set of all search-key 
values K to the set of all bucket addresses B. 

 Hash function is used to locate records for access, insertion 
as well as deletion. 

 Records with different search-key values may be mapped 
to the same bucket; thus entire bucket has to be searched 
sequentially to locate a record.  



Example of Hash File Organization 

 There are 10 buckets, 

 The binary representation of the ith character is assumed to 
be the integer i. 

 The hash function returns the sum of the binary 
representations of the characters modulo 10 

 E.g. h(Perryridge) = 5    h(Round Hill) = 3   h(Brighton) = 3 

 
Hash file organization of account file, using branch_name as key 
 (See figure in next slide.) 



Example of Hash File Organization  

Hash file 
organization of 
account file, using 
branch_name as key 
(see previous slide 
for details). 



Hash Functions 

 Worst hash function maps all search-key values to 
the same bucket; this makes access time 
proportional to the number of search-key values in 
the file. 

 An ideal hash function is uniform, i.e., each 
bucket is assigned the same number of search-key 
values from the set of all possible values. 

 Ideal hash function is random, so each bucket will 
have the same number of records assigned to it 
irrespective of the actual distribution of search-key 
values in the file. 



Handling of Bucket Overflows 

 Bucket overflow can occur because of  

 Insufficient buckets  

 Skew in distribution of records.  This can occur due to two 
reasons: 

 multiple records have same search-key value 

 chosen hash function produces non-uniform distribution of key values 

 Although the probability of bucket overflow can be reduced, 
it cannot be eliminated; it is handled by using overflow 
buckets. 



Handling of Bucket Overflows (Cont.) 

 Overflow chaining – the overflow buckets of a given 
bucket are chained together in a linked list. 

 Above scheme is called closed hashing.   

 An alternative, called open hashing, which does not 
use overflow buckets,  is not suitable for database 
applications. 

 



Hash Indices 

 Hashing can be used not only for file organization, but 
also for index-structure creation.   

 A hash index organizes the search keys, with their 
associated record pointers, into a hash file structure. 

 Strictly speaking, hash indices are always secondary 
indices  

 if the file itself is organized using hashing, a separate 
primary hash index on it using the same search-key is 
unnecessary.   

 However, we use the term hash index to refer to both 
secondary index structures and hash organized files.  



Example of Hash Index 



Deficiencies of Static Hashing 

 In static hashing, function h maps search-key values to a fixed 
set of B of bucket addresses. Databases grow or shrink with 
time.  

 If initial number of buckets is too small, and file grows, 
performance will degrade due to too much overflows. 

 If space is allocated for anticipated growth, a significant amount of 
space will be wasted initially (and buckets will be underfull). 

 If database shrinks, again space will be wasted. 

 One solution: periodic re-organization of the file with a new 
hash function 

 Expensive, disrupts normal operations 

 Better solution: allow the number of buckets to be modified 
dynamically.  



Dynamic Hashing 

 Good for database that grows and shrinks in size 

 Allows the hash function to be modified dynamically 

 

 Extendable hashing – one form of dynamic hashing  

 Hash function generates values over a large range — typically b-bit 
integers, with b = 32. 

 At any time use only a prefix of the hash function to index into a table 
of bucket addresses.    

 Let the length of the prefix be i bits,  0  i  32.   

 Bucket address table size = 2
i.  Initially i = 0 

 Value of i grows and shrinks as the size of the database grows and shrinks. 

 Multiple entries in the bucket address table may point to a bucket 
(why?) 

 Thus, actual number of buckets is < 2i 
 The number of buckets also changes dynamically due to coalescing and 

splitting of buckets.  



General Extendable Hash Structure  

In this structure, i2 = i3 = i, whereas i1 = i – 1 
(see next slide for details) 



Extendable Hashing vs. Other 
Schemes 

 Benefits of extendable hashing:   

 Hash performance does not degrade with growth of file 

 Minimal space overhead 

 Disadvantages of extendable hashing 

 Extra level of indirection to find desired record 

 Bucket address table may itself become very big (larger than 
memory) 

 Cannot allocate very large contiguous areas on disk either 

 Solution: B+-tree file organization to store bucket address table 

 Changing size of bucket address table is an expensive operation 

 Linear hashing is an alternative mechanism  

 Allows incremental growth of its directory (equivalent to bucket 
address table) 

 At the cost of more bucket overflows 



Comparison of Ordered Indexing and Hashing 

 Cost of periodic re-organization 

 Relative frequency of insertions and deletions 

 Is it desirable to optimize average access time at the 
expense of worst-case access time? 

 Expected type of queries: 

 Hashing is generally better at retrieving records having a 
specified value of the key. 

 If range queries are common, ordered indices are to be 
preferred 

 In practice: 

 PostgreSQL supports hash indices, but discourages use due to 
poor performance 

 Oracle supports static hash organization, but not hash indices 

 SQLServer supports only B+-trees 


