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Lecture 13 and 14 
Topics to be covered 

 B Trees and Hashing 

 Introduction 

 B+-Tree Node Structure 

Queries on B+-Trees 

 Insertion and deletion 

 B Trees 

 Advantages of B Tree over B+ Tree 

 Hashing 

 Static and Dynamic hashing 
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B+-Tree Index Files 

 Disadvantage of indexed-sequential files 

 performance degrades as file grows, since many 
overflow blocks get created.   

 Periodic reorganization of entire file is required. 

 Advantage of B+-tree index files:   

 automatically reorganizes itself with small, local, 
changes, in the face of insertions and deletions.   

 Reorganization of entire file is not required to 
maintain performance. 

 (Minor) disadvantage of B+-trees:  

 extra insertion and deletion overhead, space 
overhead. 

 Advantages of B+-trees outweigh disadvantages 

 B+-trees are used extensively 

B+-tree indices are an alternative to indexed-sequential files. 



B+-Tree Index Files (Cont.) 

 All paths from root to leaf are of the same length 

 Each node that is not a root or a leaf has between n/2 
and n children. 

 A leaf node has between (n–1)/2 and n–1 values 

 Special cases:  

 If the root is not a leaf, it has at least 2 children. 

 If the root is a leaf (that is, there are no other nodes in 
the tree), it can have between 0 and (n–1) values. 

A B+-tree is a rooted tree satisfying the following properties: 



B+-Tree Node Structure 
 Typical node 

 
 
 

 Ki are the search-key values  

 Pi are pointers to children (for non-leaf nodes) 
or pointers to records or buckets of records (for 
leaf nodes). 

 The search-keys in a node are ordered  

   K1 < K2 < K3 < . . . < Kn–1 

 

 

 



Leaf Nodes in B+-Trees 

 For i = 1, 2, . . ., n–1, pointer Pi either points to a file 
record with search-key value Ki, or to a bucket of 
pointers to file records, each record having search-key 
value Ki.  Only need bucket structure if search-key does 
not form a primary key. 

 If Li, Lj are leaf nodes and i < j, Li’s search-key values 
are less than Lj’s search-key values 

 Pn points to next leaf node in search-key order 

Properties of a leaf node: 



Non-Leaf Nodes in B+-Trees 

 Non leaf nodes form a multi-level sparse index on the leaf 
nodes.  For a non-leaf node with m pointers: 

 All the search-keys in the subtree to which P1 points 
are less than K1 

 For 2  i  n – 1, all the search-keys in the subtree to 
which Pi points have values greater than or equal to Ki–

1 and less than Ki 

 All the search-keys in the subtree to which Pn points 
have values greater than or equal to Kn–1 



Example of a B+-tree 

B+-tree for account file (n = 3) 



Example of B+-tree 

 Leaf nodes must have between 2 and 4 values  
((n–1)/2 and n –1, with n = 5). 

 Non-leaf nodes other than root must have 
between 3 and 5 children ((n/2 and n with n 
=5). 

 Root must have at least 2 children. 

B+-tree for account file (n = 5) 



Observations about B+-trees 

 Since the inter-node connections are done by pointers, 
“logically” close blocks need not be “physically” close. 

 The non-leaf levels of the B+-tree form a hierarchy of sparse 
indices. 

 The B+-tree contains a relatively small number of levels 

Level below root has at least 2* n/2 values 

Next level has at least 2* n/2 * n/2 values 

 .. etc. 

 If there are K search-key values in the file, the tree 
height is no more than  logn/2(K) 

 thus searches can be conducted efficiently. 

 Insertions and deletions to the main file can be handled 
efficiently, as the index can be restructured in logarithmic 
time (as we shall see). 



Queries on B+-Trees 

 Find all records with a search-key value of k. 

1. N=root 

2. Repeat 

1. Examine N for the smallest search-key value > k. 

2. If such a value exists, assume it is Ki.  Then set N = Pi 

3. Otherwise k  Kn–1. Set N = Pn  

Until N is a leaf node 

3. If for some i, key Ki = k  follow pointer Pi  to the desired record or 
bucket.   

4. Else no record with search-key value k exists. 



Queries on B+-Trees (Cont.) 

 If there are K search-key values in the file, the height 
of the tree is no more than logn/2(K). 

 A node is generally the same size as a disk block, 
typically 4 kilobytes 

 and n is typically around 100 (40 bytes per index 
entry). 

 With 1 million search key values and n = 100 

 at most  log50(1,000,000) = 4 nodes are accessed 
in a lookup. 

 Contrast this with a balanced binary tree with 1 million 
search key values — around 20 nodes are accessed in 
a lookup 

 above difference is significant since every node 
access may need a disk I/O, costing around 20 
milliseconds 



Updates on B+-Trees:  Insertion 

1. Find the leaf node in which the search-key value 
would appear 

2. If the search-key value is already present in the leaf 
node 

1. Add record to the file 

3. If the search-key value is not present, then  

1. add the record to the main file (and create a 
bucket if necessary) 

2. If there is room in the leaf node, insert (key-
value, pointer) pair in the leaf node 

3. Otherwise, split the node (along with the new 
(key-value, pointer) entry) as discussed in the 
next slide. 



 Splitting a leaf node: 

 take the n (search-key value, pointer) pairs (including 
the one being inserted) in sorted order.  Place the first 
n/2 in the original node, and the rest in a new node. 

 let the new node be p, and let k be the least key value 
in p.  Insert (k,p) in the parent of the node being split.  

 If the parent is full, split it and propagate the split 
further up. 

 Splitting of nodes proceeds upwards till a node that is not 
full is found.  

 In the worst case the root node may be split increasing 
the height of the tree by 1.  

Result of splitting node containing Brighton and Downtown on 
inserting Clearview 
Next step: insert entry with (Downtown,pointer-to-new-node) into 
parent 



Updates on B+-Trees:  Insertion 
(Cont.) 

B+-Tree before and after insertion of “Clearview” 



Redwood 

Insertion in B+-Trees (Cont.) 

 Splitting a non-leaf node: when inserting (k,p) into an 
already full internal node N 

 Copy N to an in-memory area M with space for n+1 
pointers and n keys 

 Insert (k,p) into M 

 Copy P1,K1, …, K n/2-1,P n/2 from M back into node 
N 

 Copy Pn/2+1,K n/2+1,…,Kn,Pn+1 from M into newly 
allocated node N’ 

 Insert (K n/2,N’) into parent N 

Downtown  Mianus  Perryridge Downtown 

 Mianus       



Updates on B+-Trees: Deletion 

 Find the record to be deleted, and remove it from the 
main file and from the bucket (if present) 

 Remove (search-key value, pointer) from the leaf node if 
there is no bucket or if the bucket has become empty 

 If the node has too few entries due to the removal, and 
the entries in the node and a sibling fit into a single node, 
then merge siblings: 

 Insert all the search-key values in the two nodes into a 
single node (the one on the left), and delete the other 
node. 

 Delete the pair (Ki–1, Pi), where Pi is the pointer to the 
deleted node, from its parent, recursively using the 
above procedure. 



Updates on B+-Trees:  Deletion 

 Otherwise, if the node has too few entries due to the 
removal, but the entries in the node and a sibling do 
not fit into a single node, then redistribute 
pointers: 

 Redistribute the pointers between the node and a 
sibling such that both have more than the 
minimum number of entries. 

 Update the corresponding search-key value in the 
parent of the node. 

 The node deletions may cascade upwards till a node 
which has  n/2 or more pointers is found.   

 If the root node has only one pointer after deletion, it 
is deleted and the sole child becomes the root.  



Examples of B+-Tree Deletion 

 Deleting “Downtown” causes merging of under-full leaves 

  leaf node can become empty only for n=3! 

Before and after deleting “Downtown” 



Examples of B+-Tree Deletion (Cont.) 

Before and After deletion of “Perryridge” from 
result of previous example 



 Leaf with “Perryridge” becomes underfull (actually empty, in this special case) and 
merged with its sibling. 

 As a result “Perryridge” node’s parent became underfull, and was merged with its 
sibling  

 Value separating two nodes (at parent) moves into merged node 

 Entry deleted from parent 

 Root node then has only one child, and is deleted 



Example of B+-tree Deletion (Cont.) 

 Parent  of leaf containing Perryridge became underfull, and 
borrowed a pointer from its left sibling 

 Search-key value in the parent’s parent changes as a result 

Before and after deletion of “Perryridge” from earlier 
example 



B-Tree Index Files 

 Nonleaf node – pointers Bi are the bucket or file 
record pointers. 
 

Similar to B+-tree, but B-tree allows search-key 
values to appear only once; eliminates redundant 
storage of search keys. 

Search keys in nonleaf nodes appear nowhere else 
in the B-tree; an additional pointer field for each 
search key in a nonleaf node must be included. 

Generalized B-tree leaf node 
 
 



B-Tree Index File Example 

B-tree (above) and B+-tree (below) on same data 



B-Tree Index Files (Cont.) 

 Advantages of B-Tree indices: 

 May use less tree nodes than a corresponding B+-Tree. 

 Sometimes possible to find search-key value before 
reaching leaf node. 

 Disadvantages of B-Tree indices: 

 Only small fraction of all search-key values are found early  

 Non-leaf nodes are larger, so fan-out is reduced.  Thus, B-
Trees typically have greater depth than corresponding B+-
Tree 

 Insertion and deletion more complicated than in B+-Trees  

 Implementation is harder than B+-Trees. 

 Typically, advantages of B-Trees do not out weigh 
disadvantages.  



Hashing 



Static Hashing 

 A bucket is a unit of storage containing one or more 
records (a bucket is typically a disk block).  

 In a hash file organization we obtain the bucket of a 
record directly from its search-key value using a hash 
function. 

 Hash function h is a function from the set of all search-key 
values K to the set of all bucket addresses B. 

 Hash function is used to locate records for access, insertion 
as well as deletion. 

 Records with different search-key values may be mapped 
to the same bucket; thus entire bucket has to be searched 
sequentially to locate a record.  



Example of Hash File Organization 

 There are 10 buckets, 

 The binary representation of the ith character is assumed to 
be the integer i. 

 The hash function returns the sum of the binary 
representations of the characters modulo 10 

 E.g. h(Perryridge) = 5    h(Round Hill) = 3   h(Brighton) = 3 

 
Hash file organization of account file, using branch_name as key 
 (See figure in next slide.) 



Example of Hash File Organization  

Hash file 
organization of 
account file, using 
branch_name as key 
(see previous slide 
for details). 



Hash Functions 

 Worst hash function maps all search-key values to 
the same bucket; this makes access time 
proportional to the number of search-key values in 
the file. 

 An ideal hash function is uniform, i.e., each 
bucket is assigned the same number of search-key 
values from the set of all possible values. 

 Ideal hash function is random, so each bucket will 
have the same number of records assigned to it 
irrespective of the actual distribution of search-key 
values in the file. 



Handling of Bucket Overflows 

 Bucket overflow can occur because of  

 Insufficient buckets  

 Skew in distribution of records.  This can occur due to two 
reasons: 

 multiple records have same search-key value 

 chosen hash function produces non-uniform distribution of key values 

 Although the probability of bucket overflow can be reduced, 
it cannot be eliminated; it is handled by using overflow 
buckets. 



Handling of Bucket Overflows (Cont.) 

 Overflow chaining – the overflow buckets of a given 
bucket are chained together in a linked list. 

 Above scheme is called closed hashing.   

 An alternative, called open hashing, which does not 
use overflow buckets,  is not suitable for database 
applications. 

 



Hash Indices 

 Hashing can be used not only for file organization, but 
also for index-structure creation.   

 A hash index organizes the search keys, with their 
associated record pointers, into a hash file structure. 

 Strictly speaking, hash indices are always secondary 
indices  

 if the file itself is organized using hashing, a separate 
primary hash index on it using the same search-key is 
unnecessary.   

 However, we use the term hash index to refer to both 
secondary index structures and hash organized files.  



Example of Hash Index 



Deficiencies of Static Hashing 

 In static hashing, function h maps search-key values to a fixed 
set of B of bucket addresses. Databases grow or shrink with 
time.  

 If initial number of buckets is too small, and file grows, 
performance will degrade due to too much overflows. 

 If space is allocated for anticipated growth, a significant amount of 
space will be wasted initially (and buckets will be underfull). 

 If database shrinks, again space will be wasted. 

 One solution: periodic re-organization of the file with a new 
hash function 

 Expensive, disrupts normal operations 

 Better solution: allow the number of buckets to be modified 
dynamically.  



Dynamic Hashing 

 Good for database that grows and shrinks in size 

 Allows the hash function to be modified dynamically 

 

 Extendable hashing – one form of dynamic hashing  

 Hash function generates values over a large range — typically b-bit 
integers, with b = 32. 

 At any time use only a prefix of the hash function to index into a table 
of bucket addresses.    

 Let the length of the prefix be i bits,  0  i  32.   

 Bucket address table size = 2
i.  Initially i = 0 

 Value of i grows and shrinks as the size of the database grows and shrinks. 

 Multiple entries in the bucket address table may point to a bucket 
(why?) 

 Thus, actual number of buckets is < 2i 
 The number of buckets also changes dynamically due to coalescing and 

splitting of buckets.  



General Extendable Hash Structure  

In this structure, i2 = i3 = i, whereas i1 = i – 1 
(see next slide for details) 



Extendable Hashing vs. Other 
Schemes 

 Benefits of extendable hashing:   

 Hash performance does not degrade with growth of file 

 Minimal space overhead 

 Disadvantages of extendable hashing 

 Extra level of indirection to find desired record 

 Bucket address table may itself become very big (larger than 
memory) 

 Cannot allocate very large contiguous areas on disk either 

 Solution: B+-tree file organization to store bucket address table 

 Changing size of bucket address table is an expensive operation 

 Linear hashing is an alternative mechanism  

 Allows incremental growth of its directory (equivalent to bucket 
address table) 

 At the cost of more bucket overflows 



Comparison of Ordered Indexing and Hashing 

 Cost of periodic re-organization 

 Relative frequency of insertions and deletions 

 Is it desirable to optimize average access time at the 
expense of worst-case access time? 

 Expected type of queries: 

 Hashing is generally better at retrieving records having a 
specified value of the key. 

 If range queries are common, ordered indices are to be 
preferred 

 In practice: 

 PostgreSQL supports hash indices, but discourages use due to 
poor performance 

 Oracle supports static hash organization, but not hash indices 

 SQLServer supports only B+-trees 


