Course Name:

Systems

Lecture 13 and 14 %
Topics to be covered X

d B Trees and Hashing
O Introduction
O Bt-Tree Node Structure
O Queries on B*-Trees

Bt-Tree Index Files %

Bt-tree indices are an alternative to indexed-sequential files.

O Disadvantage of indexed-sequential files

O performance degrades as file grows, since many
overflow blocks get created.

O Periodic reorganization of entire file is required.
O Advantage of Bt-tree index files:

O automatically reorganizes itself with small, local,
changes, in the face of insertions and deletions.

O Reorganization of entire file is not required to
maintain performance.

O (Minor) disadvantage of B*-trees:

O extra insertion and deletion overhead, space
overhead.

O Advantages of B*-trees outweigh disadvantages
O B*-trees are used extensively

*\/V//

\,\7 YO

s

e

S

NT=

Bt-Tree Index Files (Cont.) %

A B*-tree is a rooted tree satisfying the following properties:
O All paths from root to leaf are of the same length
O Each node that is not a root or a leaf has between M/Z%Qg
and n children.

O A leaf node has between [(n-1)/2]and n-1 values

O Special cases: ;i%

O If the root is not a leaf, it has at least 2 children.

O If the root is a leaf (that is, there are no other nodes in
the tree), it can have between 0 and (n-1) values.

L]l T

|-|| IS =

7

Bt-Tree Node Structure B

P[P [Pk

O K, are the search-key values

O P, are pointers to children (for non-leaf nodes)
or pointers to records or buckets of records (for %
leaf nodes).

O The search-keys in a node are ordered A\
Ki<Ki<K;<...<K,_;

Leaf Nodes in Bt-Trees %

Properties of a leaf node: %
O Fori=1,2,... n-1, pointer P; either points to a file
record with search-key value K;, or to a bucket of
pointers to file records, each record having search-ke
value K. Only need bucket structure if search-key doe
not form a primary key.

O If L, L; are leaf nodes and i/ < j, L;'s search-key values
are less than L;'s search-key values

%

O P, points to next leaf node in search-key order

7

Non-Leaf Nodes in B*t-Trees B

O Non leaf nodes form a multi-level sparse index on the leaf
nodes. For a non-leaf node with m pointers: ;ﬁ%é

O All the search-keys in the subtree to which P; point
are less than K;

O For 2 <i<n -1, all the search-keys in the subtree to
which P; points have values greater than or equal to K;._
; and less than K;

O All the search-keys in the subtree to which P, points
have values greater than or equal to K,,_,

Example of a B*-tree x

)

I-II.IIII.I‘LIII

Bt-tree for account file (n = 3)

7

Example of B*-tree x

—II-I-I-I

Brighton | | Downtown Mianus Perryridge| |[Redwood| |Round Hill

B+-tree for account file (n = 5) ;i%

O Leaf nodes must have between 2 and 4 values
((n-1)/21and n -1, with n = 5).

O Non-leaf nodes other than root must have
between 3 and 5 children ([(n/2]and n with n
=5).

O Root must have at least 2 children.

7

Observations about B*-trees P

Since the inter-node connections are done by pointers,
“logically” close blocks need not be “physically” close.
The non-leaf levels of the B*-tree form a hierarchy of sparse
indices.
The Bt-tree contains a relatively small number of levels

O Level below root has at least 2* [n/2 1 values

O Next level has at least 2* [n/21] * [n/2] values

O .. etc.

O If there are K search-key values in the file, the tree
height is no more than [logr,»(K) |

O thus searches can be conducted efficiently.
Insertions and deletions to the main file can be handled
efficiently, as the index can be restructured in logarithmic

time (as we shall see).

Queries on B*-Trees %

O Find all records with a search-key value of k.
1. N=root
2. Repeat

1. Examine N for the smallest search-key value > k.

2. If such a value exists, assume it is K. Then set N = P;
3. Otherwise k > K,_;. Set N = P,

Until N is a leaf node %
3. If for some i, key K; = k follow pointer P, to the desired record or
bucket.

4. Else no record with search-key value k exists.

5

Queries on B+ Trees (Cont.) %

O If there are K search-key values in the file, the height
of the tree is no more than ﬂogy,,m(Kﬂ.

s

O A node is generally the same size as a disk block,
typically 4 kilobytes

O and n is typically around 100 (40 bytes per index

entry).
O With 1 million search key values and n = 100 ;%f
O at most /og,(1,000,000) = 4 nodes are accessed
in a lookup.

O Contrast this with a balanced binary tree with 1 million
search key values — around 20 nodes are accessed in
a lookup

O above difference is significant since every node
access may need a disk I/0O, costing around 20
milliseconds

NT=

7

Updates on B*-Trees: Insertion X

1. Find the leaf node in which the search-key value
would appear
2. If the search-key value is already present in the leaf
node
1. Add record to the file
3. If the search-key value is not present, then ;i%

1. add the record to the main file (and create a
bucket if nhecessary)

2. If there is room in the leaf node, insert (key-
value, pointer) pair in the leaf node

3. Otherwise, split the node (along with the new
(key-value, pointer) entry) as discussed in the
next slide.

ALY

\‘/ L

O Splitting a leaf node:

O take the n (search-key value, pointer) pairs (includin %
the one being inserted) in sorted order. Place the first
[n/21in the original node, and the rest in a new node.

O let the new node be p, and let k be the least key value
in p. Insert (k,p) in the parent of the node being split:
O If the parent is full, split it and propagate the split

further up.

O Splitting of nodes proceeds upwards till a node that is not
full is found.

O In the worst case the root node may be split increasing»}%
the height of the tree by 1.

Prishton| Clesrien- [Povntowa] | |

Result of splitting node containing Brighton and Downtown on
inserting Clearview

Next step: insert entry with (Downtown,pointer-to-ne [tow
pDarent VT

Updates on B*-Trees: Insertion

~

Redwood

| l
Brighton| [Downtown i i Redwood| |Round Hill

Downtown

e

Clearview Downtown

B+-Tree before and after insertion of “Clearékeﬂv

L/
~,

Insertion in B*-Trees (Cont.) %

O Splitting a non-leaf node: when inserting (k,p) into an %
already full internal node N

O Copy N to an in-memory area M with space for n+1
pointers and n keys

O Insert (k,p) into M
O Copy Py,Ky, ..., Kn/21-1/P /21 from M back into node

\ %%
O CopY Prrsts1K oyt 1rees K Pras from M into newly]
allocated node N’

O Insert (K,>,N’) into parent N

7

Updates on B*-Trees: Deletion X

O Find the record to be deleted, and remove it from the
main file and from the bucket (if present)

O Remove (search-key value, pointer) from the leaf node i
there is no bucket or if the bucket has become empty

O If the node has too few entries due to the removal, and
the entries in the node and a sibling fit into a single node;ié&

then merge siblings:

O Insert all the search-key values in the two nodes into a
single node (the one on the left), and delete the other

node.

O Delete the pair (K;_{, P;), where P, is the pointer to t
deleted node, from its parent, recursively using the

above procedure.
AV
\“/ /
,,f;;r:v' §;,\§\,>

7

Updates on B*-Trees: Deletion X

O Otherwise, if the node has too few entries due to the
removal, but the entries in the node and a sibling do

not fit |nto a single node, then redistribute
pointers:

O Redistribute the pointers between the node and a
sibling such that both have more than the
minimum number of entries.

O Update the corresponding search-key value in the
parent of the node.
O The node deletions may cascade upwards till a node

which has [n/21]or more pointers is found.
O If the root node has only one pointer after deletion, |t*

is deleted and the sole child becomes the root.

Si

Examples of B*-Tree Deletion

Mianus Redwood

/ / \

Clearview i Perryridge Redwood

Before and after deleting "Downtown”
O Deleting "Downtown” causes merging of under-full leaves
O leaf node can become empty only for n=3!

7

Examples of B*-Tree Deletion (Cont.)

e o[e [T T

[[Jrvit]
| | | o e

Before and After deletion of “Perryridge” from
result of previous example

s

\J W

S

Brighton | ‘I I.I Perryridge Redwood | |Round Hill

Clearview

Leaf with “Perryridge” becomes underfull (actually empty, in this special case) and

sibling
O Value separating two nodes (at parent) moves into merged node
O Entry deleted from parent

Root node then has only one child, and is deleted

merged with its sibling.
As a result “Perryridge” node’s parent became underfull, and was merged with its %

a

I

I Brighton Clearview I I Mianus I-I

||| | | e

Before and after deletion of “Perryridge” from earlier

example - :
O Parent of leaf containing Perryridge became underfull, an

borrowed a pointer from its left sibling
O Search-key value in the parent’s parent changes as a }esulw

B-Tree Index Files %

Similar to B+-tree, but B-tree allows search-key
values to appear only once; eliminates redundant

storage of search keys.
Search keys in nonleaf nodes appear nowhere else
in the B-tree; an additional pointer field for each

search key in a nonleaf nhode must be included.
Generalized B-tree leaf node

O Nonleaf node - pointers Bi are the bucket or file
record pointers.

B-Tree Index File Example &
] [povmona] | [revood |

Downtown/ Redwood
bucket bucket

I Brighton I Clearview I I Mianus Perryridge I Round Hill Ill

Brighton Clearview Mianus Perryridge Round Hill
bucket bucket bucket bucket bucket

B-tree (above) and B+-tree (below) on same data

B-Tree Index Files (Cont.) % P

O Advantages of B-Tree indices:
O May use less tree nodes than a corresponding B*-Tree.
O Sometimes possible to find search-key value before%)%@
reaching leaf node.
O Disadvantages of B-Tree indices:

O Only small fraction of all search-key values are found early

O Non-leaf nodes are larger, so fan-out is reduced. Thu%%
¥rees typically have greater depth than corresponding
ree

O Insertion and deletion more complicated than in B*-Trees
O Implementation is harder than B*-Trees.

O Typically, advantages of B-Trees do not out weigh
disadvantages.

- Vs
\¥/ / N

Static Hashing %

O A bucket is a unit of storage containing one or more
records (a bucket is typically a disk block).

O In a hash file organization we obtain the bucket of a
record directly from its search-key value using a hash
function.

O Hash function h is a function from the set of all search-key
values K to the set of all bucket addresses B.

O Hash function is used to locate records for access, insertio
as well as deletion.

Example of Hash File Organization %

%

Hash file organization of account file, using branch_name as key
(See figure in next slide.)

O There are 10 buckets,

O The binary representation of the ith character is assume
be the integer /.

Example of Hash File Organization o

bucket 5
-
AR
organization of A215 | Perryridge | 700 |
account file, using _-
branch_name as key bucket 6
(see previous slide

for details).

bucket 2 bucket 7

(AT [Mians [70

bucket 9

A 70

Hash Functions %

O Worst hash function maps all search-key valu
the same bucket; this makes access time
proportional to the number of search-key values in
the file.

O An ideal hash function is uniform, i.e., eag%f
bucket is assigned the same number of search-key
values from the set of all possible values.

s

O Ideal hash function is random, so each bucket will
have the same number of records assigned i
irrespective of the actual distribution of search-

values in the file.
=AY
2y

Handling of Bucket Overflows X

O Bucket overflow can occur because of

O Insufficient buckets

O Skew in distribution of records. This can occur due to two
reasons:

O multiple records have same search-key value

Handling of Bucket Overflows (Cg%.@)

O Overflow chaining - the overflow buckets of a given %
bucket are chained together in a linked list.

O Above scheme is called closed hashing.

O An alternative, called open hashing, which does no
use overflow buckets, is not suitable for database

applications. bucket0|:|—
buCkEtl E—E‘E

overflow buckets for bucket 1

:;io
_

Hash Indices X

O Hashing can be used not only for file organization, but »3%
also for index-structure creation.

O A hash index organizes the search keys, with their
associated record pointers, into a hash file structure.

O Strictly speaking, hash indices are always secondary
indices
O if the file itself is organized using hashin

, a separate

Example of Hash Index

K

W

A-217 | Brighton
own | 500
-110 | Downtown | 600
-21
-102
-201

-218

=

)
9]

05

750 %%

700

erryridge | 400
Perryridge | 900
Perryridge | 700

Redwood 700
ound Hill

0

S
=/

=3

e Yy
SALX

7

Deficiencies of Static Hashing x

O In static hashing, function h maps search-key values to a

set of B of bucket addresses. Databases grow or shrink w;ﬁ%
time.

O If initial number of buckets is too small, and file grows,
performance will degrade due to too much overflows.

O If space is allocated for anticipated growth, a significant amoun%
space will be wasted initially (and buckets will be underfull).

O If database shrinks, again space will be wasted.

One solution: periodic re-organization of the file with a new
hash function

O Expensive, disrupts normal operations
Better solution: allow the number of buckets to be modifi
dynamically.

- V/ 7

j\\

N

/}

Dynamic Hashing x

O Good for database that grows and shrinks in size
O Allows the hash function to be modified dynamically

O Extendable hashing - one form of dynamic hashing o »J)

O Hash function generates values over a large range — typlcaffy b§b|t
integers, with b = 32.

O At any time use only a prefix of the hash function to index into a ta
of bucket addresses.

O Let the length of the prefix be i bits, 0 </ < 32.

General Extendable Hash Struct?% &

hash prefix

bucket 1

(see next slide for details)

bucket address table
In this structure, i, = i; =i, whereasi; =i -1

Extendable Hashing vs. Other a
Schemes

O Benefits of extendable hashing:
O Hash performance does not degrade with growth of file
O Minimal space overhead

O Disadvantages of extendable hashing
O Extra level of indirection to find desired record

O Bucket address table may itself become very big (larger than
memory)

O Cannot allocate very large contiguous areas on disk either
O Solution: B*-tree file organization to store bucket address tabl

Comparison of Ordered Indexing and Hé%ﬂg

O 00O

%

Cost of periodic re-organization
Relative frequency of insertions and deletions

Is it desirable to optimize average access time at the
expense of worst-case access time? e

Expected type of queries: AN N

O Hashing is generally better at retrieving records having a
specified value of the key.

O If range queries are common, ordered indices are to be
preferred

