
Course Name:
Database Management
Systems

Lecture 11
Topics to be covered

 Examples of Relational Algebra and Other Operations

2

Introduction

 This is a procedural query language which consists of set
of operations that take one or two relations as input and
produce a new relation as result.

Division of the Topic

 Set intersection operation

 Natural join

 Division operator

 Assignment operator

 Aggregate functions

Additional Operations

 Additional Operations

 Set intersection

 Natural join

 Aggregation

 Outer Join

 Division

 All above, other than aggregation, can be expressed using
basic operations we have seen earlier

Set-Intersection Operation – Example

 Relation r, s:

 r s

A B

1
2
1

A B

2
3

r s

A B

 2

Natural Join Operation – Example

 Relations r, s:

A B

1
2
4
1
2

C D

a
a
b
a
b

B

1
3
1
2
3

D

a
a
a
b
b

E

r

A B

1
1
1
1
2

C D

a
a
a
a
b

E

s

n r s

n Notation: r s

Natural-Join Operation

 Let r and s be relations on schemas R and S respectively.
Then, r s is a relation on schema R S obtained as follows:

 Consider each pair of tuples tr from r and ts from s.

 If tr and ts have the same value on each of the attributes in R S,
add a tuple t to the result, where

 t has the same value as tr on r

 t has the same value as ts on s

 Example:

R = (A, B, C, D)

S = (E, B, D)

 Result schema = (A, B, C, D, E)

 r s is defined as:

 r.A, r.B, r.C, r.D, s.E (r.B = s.B r.D = s.D (r x s))

Bank Example Queries
 Find the largest account balance

 Strategy:

 Find those balances that are not the largest

 Rename account relation as d so that we can compare
each account balance with all others

 Use set difference to find those account balances that were
not found in the earlier step.

 The query is:

balance(account) - account.balance

 (account.balance < d.balance (account x rd
(account)))

Aggregate Functions and Operations

 Aggregation function takes a collection of values and returns
a single value as a result.

 avg: average value
 min: minimum value
 max: maximum value
 sum: sum of values
 count: number of values

 Aggregate operation in relational algebra

E is any relational-algebra expression

 G1, G2 …, Gn is a list of attributes on which to group (can be
empty)

 Each Fi is an aggregate function

 Each Ai is an attribute name

)(
)(,,(),(,,, 221121

E
nnn AFAFAFGGG

Aggregate Operation – Example
 Relation r:

A B

C

7

7

3

10

n g sum(c) (r) sum(c)

27

n Question: Which aggregate operations cannot be expressed
using basic relational operations?

Aggregate Operation – Example
 Relation account grouped by branch-name:

branch_name g sum(balance) (account)

branch_name account_number balance

Perryridge
Perryridge
Brighton
Brighton
Redwood

A-102
A-201
A-217
A-215
A-222

400
900
750
750
700

branch_name sum(balance)

Perryridge
Brighton
Redwood

1300
1500
700

Aggregate Functions (Cont.)

 Result of aggregation does not have a name

 Can use rename operation to give it a name

 For convenience, we permit renaming as part of aggregate
operation

 branch_name g sum(balance) as sum_balance

(account)

Outer Join

 An extension of the join operation that avoids loss of
information.

 Computes the join and then adds tuples form one relation that
does not match tuples in the other relation to the result of the
join.

 Uses null values:

 null signifies that the value is unknown or does not exist

 All comparisons involving null are (roughly speaking) false by
definition.

 We shall study precise meaning of comparisons with nulls later

Outer Join – Example
 Relation loan

n Relation borrower

customer_name loan_number

Jones
Smith
Hayes

L-170
L-230
L-155

3000
4000
1700

loan_number amount

L-170
L-230
L-260

branch_name

Downtown
Redwood
Perryridge

Outer Join – Example
 Join

loan borrower

loan_number amount

L-170
L-230

3000
4000

customer_name

Jones
Smith

branch_name

Downtown
Redwood

Jones
Smith
null

loan_number amount

L-170
L-230
L-260

3000
4000
1700

customer_name branch_name

Downtown
Redwood
Perryridge

n Left Outer Join

 loan borrower

Outer Join – Example

loan_number amount

L-170
L-230
L-155

3000
4000
null

customer_name

Jones
Smith
Hayes

branch_name

Downtown
Redwood
null

loan_number amount

L-170
L-230
L-260
L-155

3000
4000
1700
null

customer_name

Jones
Smith
null
Hayes

branch_name

Downtown
Redwood
Perryridge
null

n Full Outer Join

 loan borrower

n Right Outer Join

 loan borrower

n Question: can outerjoins be expressed using basic
relational

 algebra operations

Null Values

 It is possible for tuples to have a null value, denoted by null,

for some of their attributes

 null signifies an unknown value or that a value does not

exist.

 The result of any arithmetic expression involving null is null.

 Aggregate functions simply ignore null values (as in SQL)

 For duplicate elimination and grouping, null is treated like

any other value, and two nulls are assumed to be the same

(as in SQL)

Null Values

 Comparisons with null values return the special truth value:
unknown

 If false was used instead of unknown, then not (A < 5)
 would not be equivalent to A >= 5

 Three-valued logic using the truth value unknown:

 OR: (unknown or true) = true,
 (unknown or false) = unknown
 (unknown or unknown) = unknown

 AND: (true and unknown) = unknown,
 (false and unknown) = false,
 (unknown and unknown) = unknown

 NOT: (not unknown) = unknown

 In SQL “P is unknown” evaluates to true if predicate P evaluates
to unknown

 Result of select predicate is treated as false if it evaluates to
unknown

Division Operation
 Notation:

 Suited to queries that include the phrase “for all”.

 Let r and s be relations on schemas R and S

respectively where

 R = (A1, …, Am , B1, …, Bn)

 S = (B1, …, Bn)

The result of r s is a relation on schema

R – S = (A1, …, Am)

 r s = { t | t R-S (r) u s (tu r) }

Where tu means the concatenation of tuples t and u to

produce a single tuple

r s

