
Course Name:
Database Management
Systems

Lecture 10
Topics to be covered

 DDL

 Tuple Calculus

Data Definition Language

The schema for each relation, including attribute types.

Integrity constraints

Authorization information for each relation.

Non-standard SQL extensions also allow specification of

The set of indices to be maintained for each relations.

The physical storage structure of each relation on disk.

Allows the specification of:

Create Table Construct

An SQL relation is defined using the create table command:

 create table r (A1 D1, A2 D2, ..., An Dn,
 (integrity-constraint1),
 ...,
 (integrity-constraintk))

r is the name of the relation

each Ai is an attribute name in the schema of relation r

Di is the data type of attribute Ai

Example:

 create table branch
 (branch_name char(15),
 branch_city char(30),
 assets integer)

Domain Types in SQL

char(n). Fixed length character string, with user-specified
length n.

varchar(n). Variable length character strings, with user-
specified maximum length n.

int. Integer (a finite subset of the integers that is machine-
dependent).

smallint. Small integer (a machine-dependent subset of the
integer domain type).

numeric(p,d). Fixed point number, with user-specified precision
of p digits, with n digits to the right of decimal point.

real, double precision. Floating point and double-precision
floating point numbers, with machine-dependent precision.

float(n). Floating point number, with user-specified precision of
at least n digits.

More are covered in Chapter 4.

Integrity Constraints on Tables

 not null

 primary key (A1, ..., An)

Example: Declare branch_name as the primary key for branch

.

 create table branch

 (branch_name char(15),

 branch_city char(30) not null,

 assets integer,

 primary key (branch_name))

primary key declaration on an attribute automatically ensures

not null in SQL-92 onwards, needs to be explicitly stated in

SQL-89

Basic Insertion and Deletion of Tuples

 Newly created table is empty

 Add a new tuple to account

 insert into account
 values ('A-9732', 'Perryridge', 1200)

 Insertion fails if any integrity constraint is violated

 Delete all tuples from account

 delete from account

 Note: Will see later how to delete selected tuples

Drop and Alter Table Constructs
The drop table command deletes all information about the

dropped relation from the database.

The alter table command is used to add attributes to an
existing relation:

 alter table r add A D

 where A is the name of the attribute to be added to relation
r and D is the domain of A.

All tuples in the relation are assigned null as the
value for the new attribute.

The alter table command can also be used to drop attributes
of a relation:

 alter table r drop A

 where A is the name of an attribute of relation r

Dropping of attributes not supported by many
databases

Basic Query Structure

A typical SQL query has the form:

 select A1, A2, ..., An
 from r1, r2, ..., rm
 where P

Ai represents an attribute

Ri represents a relation

P is a predicate.

This query is equivalent to the relational algebra
expression.

The result of an SQL query is a relation.

))((
21,,, 21 mPAAA

rrr
n

  

The select Clause

 The select clause list the attributes desired in the result of a
query

 corresponds to the projection operation of the relational
algebra

 Example: find the names of all branches in the loan relation:

 select branch_name

 from loan

 In the relational algebra, the query would be:

 branch_name (loan)

 NOTE: SQL names are case insensitive (i.e., you may use
upper- or lower-case letters.)

 E.g. Branch_Name ≡ BRANCH_NAME ≡ branch_name

 Some people use upper case wherever we use bold font.

The select Clause (Cont.)
SQL allows duplicates in relations as well as in query results.

To force the elimination of duplicates, insert the keyword
distinct after select.

Find the names of all branches in the loan relations, and
remove duplicates

 select distinct branch_name
 from loan

The keyword all specifies that duplicates not be removed.

 select all branch_name
 from loan

The select Clause (Cont.)

 An asterisk in the select clause denotes “all attributes”

 select *
 from loan

 The select clause can contain arithmetic expressions involving
the operation, +, –, , and /, and operating on constants or
attributes of tuples.

 E.g.:

 select loan_number, branch_name, amount  100
 from loan

The where Clause

 The where clause specifies conditions that the result must
satisfy

 Corresponds to the selection predicate of the relational algebra.

 To find all loan number for loans made at the Perryridge
branch with loan amounts greater than $1200.

 select loan_number
 from loan
 where branch_name = 'Perryridge' and amount >
1200

 Comparison results can be combined using the logical
connectives and, or, and not.

The from Clause

The from clause lists the relations involved in the query

Corresponds to the Cartesian product operation of the relational algebra.

Find the Cartesian product borrower X loan

 select 
 from borrower, loan

 Find the name, loan number and loan amount of all customers

 having a loan at the Perryridge branch.

select customer_name, borrower.loan_number, amount

 from borrower, loan

 where borrower.loan_number = loan.loan_number and

 branch_name = 'Perryridge'

The Rename Operation
 SQL allows renaming relations and attributes using the as

clause:

 old-name as new-name

 E.g. Find the name, loan number and loan amount of all

customers; rename the column name loan_number as loan_id.

select customer_name, borrower.loan_number as

loan_id, amount

from borrower, loan

where borrower.loan_number = loan.loan_number

Tuple Variables
Tuple variables are defined in the from clause via the use of the

as clause.

Find the customer names and their loan numbers and amount for
all customers having a loan at some branch.

 Find the names of all branches that have greater assets than

 some branch located in Brooklyn.

 select distinct T.branch_name

 from branch as T, branch as S

 where T.assets > S.assets and S.branch_city = 'Brooklyn'

Keyword as is optional and may be omitted

 borrower as T ≡ borrower T

 Some database such as Oracle require as to be omitted

select customer_name, T.loan_number, S.amount
 from borrower as T, loan as S
 where T.loan_number = S.loan_number

Example
Instances

 We will use these
instances of the
Sailors and Reserves
relations in our
examples.

 If the key for the
Reserves relation
contained only the
attributes sid and
bid, how would the
semantics differ?

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid bid day

22 101 10/10/96

58 103 11/12/96

R1

S1

S2

