

 8086 instruction set
 Addressing modes
 Data Transfer Instructions
 Logical Instructions
 Shift and Rotate Instructions
 Arithmetic Instructions
 Transfer Instructions
 Loop Control
 String Instructions
 Repeat instructions
 Processor Control Instructions

 Data moving instructions.
 Arithmetic - add, subtract, increment, decrement,

convert byte/word and compare.
 Logic - AND, OR, exclusive OR, shift/rotate and test.
 String manipulation - load, store, move, compare and

scan for byte/word.
 Control transfer - conditional, unconditional, call

subroutine and return from subroutine.
 Input/Output instructions.
 Other - setting/clearing flag bits, stack operations,

software interrupts, etc.

 Implied - the data value/data address is
implicitly associated with the instruction.

 Register - references the data in a register
or in a register pair.

 Immediate - the data is provided in the
instruction.

 Direct - the instruction operand specifies
the memory address where data is located.

 Register indirect - instruction specifies a
register containing an address, where data
is located. This addressing mode works
with SI, DI, BX and BP registers.

 Based - 8-bit or 16-bit instruction operand address is added to the
contents of a base register (BX or BP), the resulting value is a pointer to
location where data resides.

 Indexed - 8-bit or 16-bit instruction operand address is added to the
contents of an index register (SI or DI), the resulting value is a pointer to
location where data resides.

 Based Indexed - the contents of a base register (BX or BP) is added to
the contents of an index register (SI or DI), the resulting value is a pointer
to location where data resides.

 Based Indexed with displacement - 8-bit or 16-bit instruction operand is
added to the contents of a base register (BX or BP) and index register (SI
or DI), the resulting value is a pointer to location where data resides.

MOV :Move byte or word to register or
memory

IN, OUT: Input byte or word from port, output
word to port

LEA: Load effective address
LDS, LES Load pointer using data segment,

extra segment
PUSH, POP: Push word onto stack, pop word

off stack
XCHG: Exchange byte or word
XLAT: Translate byte using look-up table

 NOT : Logical NOT of byte or word (one's

complement)
 AND: Logical AND of byte or word
 OR: Logical OR of byte or word
 XOR: Logical exclusive-OR of byte or word
 TEST: Test byte or word (AND without

storing)

 SHL, SHR Logical shift left, right byte or
word? by 1 or CL

 SAL, SAR Arithmetic shift left, right byte
or word? by 1 or CL

 ROL, ROR Rotate left, right byte or word?
by 1 or CL

 RCL, RCR Rotate left, right through carry
byte or word? by 1 or CL

 ADD, SUB: Add, subtract byte or word
 ADC, SBB :Add, subtract byte or word and carry (borrow)
 INC, DEC: Increment, decrement byte or word
 NEG: Negate byte or word (two's complement)
 CMP: Compare byte or word (subtract without storing)
 MUL, DIV: Multiply, divide byte or word (unsigned)
 IMUL, IDIV: Integer multiply, divide byte or word (signed)
 CBW, CWD: Convert byte to word, word to double word (useful

before multiply/divide)
 AAA, AAS, AAM,AAD: ASCII adjust for addition, subtraction,

multiplication, division (ASCII codes 30-39)
 DAA, DAS: Decimal adjust for addition, subtraction (binary coded

decimal numbers)

 JMP: Unconditional jump (short ?127/8, near ?32K, far between segments)
Conditional jumps:

 JA (JNBE): Jump if above (not below or equal)? +127, -128 range only
 JAE (JNB): Jump if above or equal(not below)? +127, -128 range only
 JB (JNAE): Jump if below (not above or equal)? +127, -128 range only
 JBE (JNA): Jump if below or equal (not above)? +127, -128 range only
 JE (JZ): Jump if equal (zero)? +127, -128 range only
 JG (JNLE): Jump if greater (not less or equal)? +127, -128 range only
 JGE (JNL): Jump if greater or equal (not less)? +127, -128 range only
 JL (JNGE): Jump if less (not greater nor equal)? +127, -128 range only
 JLE (JNG): Jump if less or equal (not greater)? +127, -128 range only
 JC, JNC: Jump if carry set, carry not set? +127, -128 range only
 JO, JNO: Jump if overflow, no overflow? +127, -128 range only
 JS, JNS: Jump if sign, no sign? +127, -128 range only
 JNP (JPO): Jump if no parity (parity odd)? +127, -128 range only
 JP (JPE): Jump if parity (parity even)? +127, -128 range only

 LOOP: Loop unconditional, count in CX, short
jump to target address

 LOOPE (LOOPZ): Loop if equal (zero), count
in CX, short jump to target address

 LOOPNE (LOOPNZ): Loop if not equal (not
zero), count in CX, short jump to target
address

 JCXZ: Jump if CX equals zero (used to skip
code in loop)

 CALL, RET: Call, return from procedure (inside
or outside current segment)

 INT, INTO: Software interrupt, interrupt if
overflow

 IRET: Return from interrupt

 MOVS: Move byte or word string
 MOVSB, MOVSW: Move byte, word string
 CMPS: Compare byte or word string
 SCAS S: can byte or word string (comparing

to A or AX)
 LODS, STOS: Load, store byte or word

string to AL .

Repeat instructions (placed in front of other
string operations):

 REP: Repeat
 REPE, REPZ: Repeat while equal, zero
 REPNE, REPNZ: Repeat while not equal

(zero)

 Flag manipulation:
 STC, CLC, CMC: Set, clear, complement

carry flag
 STD, CLD: Set, clear direction flag
 STI, CLI: Set, clear interrupt enable flag
 PUSHF, POPF: Push flags onto stack, pop

flags off stack

