CAO: Lecture 29
Instructions of 8086

Topics Covered

8086 instruction set
Addressing modes

Data Transfer Instructions
Logical Instructions

Shift and Rotate Instructions
Arithmetic Instructions
Transfer Instructions

Loop Control

String Instructions

Repeat instructions
Processor Control Instructions

8086 Instruction set:

Data moving instructions.

Arithmetic - add, subtract, increment, decrement,
convert byte/word and compare.

Logic - AND, OR, exclusive OR, shift/rotate and test.
String manipulation - load, store, move, compare and
scan for byte/word.

Control transfer - conditional, unconditional, call
subroutine and return from subroutine.
Input/Output instructions.

Other - setting/clearing flag bits, stack operations,
software interrupts, etc.

Addressing modes...

Implied - the data value/data address is
implicitly associated with the instruction.
Register - references the data in a register
or in a register pair. |
Immediate - the data is provided in the
Instruction.

Direct - the instruction operand specifies
the memory address where data is located.
Register indirect - instruction specifies a
register containing an address, where data
is [ocated. This addressing mode works
with Sl, DI, BX and BP registers.

Addressing modes

Based - 8-bit or 16-bit instruction operand address is added to the
contents of a base register (BX or BP), the resulting value is a pointer to
location where data resides.

Indexed - 8-bit or 16-bit instruction operand address is added to the
contents of an index register (Sl or DI), the resulting value is a pointer to
location where data resides.

Based Indexed - the contents of a base register (BX or BP) is added to
the contents of an index register (Sl or DI), the resulting value is a pointer
to location where data resides.

Based Indexed with displacement - 8-bit or 16-bit instruction operand is
added to the contents of a base register (BX or BP) and index register (Sl
or DI), the resulting value is a pointer to location where data resides.

Data Transfer Instructions

MOV :Move byte or word to register or
memory

IN, OUT: Input byte or word from port, output
word to port

LEA: Load effective address

LDS, LES Load pointer using data segment,
extra segment

PUSH, POP: Push word onto stack, pop word
off stack

XCHG: Exchange byte or word

XLAT: Translate byte using look-up table

Logical Instructions

NOT : Logical NOT of byte or word (one's
complement)

AND: Logical AND of byte or word

OR: Logical OR of byte or word

XOR: Logical exclusive-OR of byte or word
TEST: Test byte or word (AND without

storing)

Shift and Rotate Instructions

SHL, SHR Logical shift left, right byte or
word? by 1 or CL

SAL, SAR Arithmetic shift left, right byte
or word? by 1 or CL

ROL, ROR Rotate left, right byte or word?
oy 1 0or CL

RCL, RCR Rotate left, right through carry
oyte or word? by 1 or CL

Arithmetic Instructions

ADD, SUB: Add, subtract byte or word

ADC, SBB :Add, subtract byte or word and carry (borrow)

INC, DEC: Increment, decrement byte or word

NEG: Negate byte or word (two's complement)

CMP: Compare byte or word (subtract without storing)

MUL, DIV: Multiply, divide byte or word (unsigned)

IMUL, IDIV: Integer multiply, divide byte or word (signed)
CBW, CWD: Convert byte to word, word to double word (useful
before multiply/divide)

AAA, AAS, AAM,AAD: ASCII adjust for addition, subtraction,
multiplication, division (ASCIl codes 30-39)

DAA, DAS: Decimal adjust for addition, subtraction (binary coded
decimal numbers)

JMP: Unconditional jump (short ?127/8, near 732K, far between segments)
Conditional jumps:

JA (JNBE): Jump if above (not below or equal)? +127, -128 range only
JAE (JNB): Jump if above or equal(not below)? +127, -128 range only
JB (JNAE): Jump if below (not above or equal)? +127, -128 range only
JBE (JNA): Jump if below or equal (not above)? +127, -128 range only
JE (JZ): Jump if equal (zero)? +127, -128 range only

JG (JNLE): Jump if greater (not less or equal)? +127, -128 range only
JGE (JNL): Jump if greater or equal (not less)? +127, -128 range only
JL (JNGE): Jump if less (not greater nor equal)? +127, -128 range only
JLE (JNG): Jump if less or equal (not greater)? +127, -128 range only
JC, JNC: Jump if carry set, carry not set? +127, -128 range only
JO JNO: Jump if overﬂow no overflow? +127, -128 range only
JS, JNS: Jump |f 5|]9n no 5|gn7 +127, -128 range only

INP (JPO): Jump if no parity (parity odd)? +127, -128 range only
JP (JPE): Jump if parity (parity even)? +127, -128 range only

Loop Control

LOOP: Loop unconditional, countin CX, short
jump to target address

LOOPE (LOOPZ): Loop if equal (zero), count
in CX, short jump to target address

LOOPNE (LOOPNZ): Loop if not equal (not
zero), count in CX, short jump to target

address
JCXZ: Jump if CX equals zero (used to skip

codein loop)

Subroutine and Interrupt Instructions

CALL, RET: Call, return from procedure (inside
or outside current segment)

INT, INTO: Software interrupt, interrupt if
overflow

IRET: Return from interrupt

String Instructions

MOVS: Move byte or word string

MOVSB, MOVSW: Move byte, word string
CMPS: Compare byte or word string

SCAS S: can byte or word string (comparing
to A or AX)

LODS, STOS: Load, store byte or word
stringto AL .

Repeat instructions

Repeat instructions (placed in front of other
string operations):
REP: Repeat
REPE, REPZ: Repeat while equal, zero

REPNE, REPNZ: Repeat while not equal
(zero)

Processor Control Instructions

Flag manipulation:

STC, CLC, CMC: Set, clear, complement
carry flag

STD, CLD: Set, clear direction flag

STI, CLI: Set, clearinterrupt enable flag
PUSHF, POPF: Push flags onto stack, pop
flags off stack

Coprocessor, multiprocessoyr interface:

ESC Escape to external processor interface
LOCK Lock bus during next instruction
Inacrtive stares:

NOP No operation

WAIT Wait for TEST pin activity

HIL.T Halt processor

O 00000

