

 8086 instruction set
 Addressing modes
 Data Transfer Instructions
 Logical Instructions
 Shift and Rotate Instructions
 Arithmetic Instructions
 Transfer Instructions
 Loop Control
 String Instructions
 Repeat instructions
 Processor Control Instructions

 Data moving instructions.
 Arithmetic - add, subtract, increment, decrement,

convert byte/word and compare.
 Logic - AND, OR, exclusive OR, shift/rotate and test.
 String manipulation - load, store, move, compare and

scan for byte/word.
 Control transfer - conditional, unconditional, call

subroutine and return from subroutine.
 Input/Output instructions.
 Other - setting/clearing flag bits, stack operations,

software interrupts, etc.

 Implied - the data value/data address is
implicitly associated with the instruction.

 Register - references the data in a register
or in a register pair.

 Immediate - the data is provided in the
instruction.

 Direct - the instruction operand specifies
the memory address where data is located.

 Register indirect - instruction specifies a
register containing an address, where data
is located. This addressing mode works
with SI, DI, BX and BP registers.

 Based - 8-bit or 16-bit instruction operand address is added to the
contents of a base register (BX or BP), the resulting value is a pointer to
location where data resides.

 Indexed - 8-bit or 16-bit instruction operand address is added to the
contents of an index register (SI or DI), the resulting value is a pointer to
location where data resides.

 Based Indexed - the contents of a base register (BX or BP) is added to
the contents of an index register (SI or DI), the resulting value is a pointer
to location where data resides.

 Based Indexed with displacement - 8-bit or 16-bit instruction operand is
added to the contents of a base register (BX or BP) and index register (SI
or DI), the resulting value is a pointer to location where data resides.

MOV :Move byte or word to register or
memory

IN, OUT: Input byte or word from port, output
word to port

LEA: Load effective address
LDS, LES Load pointer using data segment,

extra segment
PUSH, POP: Push word onto stack, pop word

off stack
XCHG: Exchange byte or word
XLAT: Translate byte using look-up table

 NOT : Logical NOT of byte or word (one's

complement)
 AND: Logical AND of byte or word
 OR: Logical OR of byte or word
 XOR: Logical exclusive-OR of byte or word
 TEST: Test byte or word (AND without

storing)

 SHL, SHR Logical shift left, right byte or
word? by 1 or CL

 SAL, SAR Arithmetic shift left, right byte
or word? by 1 or CL

 ROL, ROR Rotate left, right byte or word?
by 1 or CL

 RCL, RCR Rotate left, right through carry
byte or word? by 1 or CL

 ADD, SUB: Add, subtract byte or word
 ADC, SBB :Add, subtract byte or word and carry (borrow)
 INC, DEC: Increment, decrement byte or word
 NEG: Negate byte or word (two's complement)
 CMP: Compare byte or word (subtract without storing)
 MUL, DIV: Multiply, divide byte or word (unsigned)
 IMUL, IDIV: Integer multiply, divide byte or word (signed)
 CBW, CWD: Convert byte to word, word to double word (useful

before multiply/divide)
 AAA, AAS, AAM,AAD: ASCII adjust for addition, subtraction,

multiplication, division (ASCII codes 30-39)
 DAA, DAS: Decimal adjust for addition, subtraction (binary coded

decimal numbers)

 JMP: Unconditional jump (short ?127/8, near ?32K, far between segments)
Conditional jumps:

 JA (JNBE): Jump if above (not below or equal)? +127, -128 range only
 JAE (JNB): Jump if above or equal(not below)? +127, -128 range only
 JB (JNAE): Jump if below (not above or equal)? +127, -128 range only
 JBE (JNA): Jump if below or equal (not above)? +127, -128 range only
 JE (JZ): Jump if equal (zero)? +127, -128 range only
 JG (JNLE): Jump if greater (not less or equal)? +127, -128 range only
 JGE (JNL): Jump if greater or equal (not less)? +127, -128 range only
 JL (JNGE): Jump if less (not greater nor equal)? +127, -128 range only
 JLE (JNG): Jump if less or equal (not greater)? +127, -128 range only
 JC, JNC: Jump if carry set, carry not set? +127, -128 range only
 JO, JNO: Jump if overflow, no overflow? +127, -128 range only
 JS, JNS: Jump if sign, no sign? +127, -128 range only
 JNP (JPO): Jump if no parity (parity odd)? +127, -128 range only
 JP (JPE): Jump if parity (parity even)? +127, -128 range only

 LOOP: Loop unconditional, count in CX, short
jump to target address

 LOOPE (LOOPZ): Loop if equal (zero), count
in CX, short jump to target address

 LOOPNE (LOOPNZ): Loop if not equal (not
zero), count in CX, short jump to target
address

 JCXZ: Jump if CX equals zero (used to skip
code in loop)

 CALL, RET: Call, return from procedure (inside
or outside current segment)

 INT, INTO: Software interrupt, interrupt if
overflow

 IRET: Return from interrupt

 MOVS: Move byte or word string
 MOVSB, MOVSW: Move byte, word string
 CMPS: Compare byte or word string
 SCAS S: can byte or word string (comparing

to A or AX)
 LODS, STOS: Load, store byte or word

string to AL .

Repeat instructions (placed in front of other
string operations):

 REP: Repeat
 REPE, REPZ: Repeat while equal, zero
 REPNE, REPNZ: Repeat while not equal

(zero)

 Flag manipulation:
 STC, CLC, CMC: Set, clear, complement

carry flag
 STD, CLD: Set, clear direction flag
 STI, CLI: Set, clear interrupt enable flag
 PUSHF, POPF: Push flags onto stack, pop

flags off stack

