CAO: Lecture 24 Memory Reference, Register Reference

Topics Covered

- Common bus system
- Computer instructions
- Memory reference instruction
- Register reference instruction
- Input-output instruction

Detailed data path of a typical register based CPU

- The internal organization of a digital system is defined by the sequence of micro operations it performs on data stored in its registers.
- Digital computer is capable of executing various micro operations & can be instructed as to what sequence of operations it must perform.
- The user of a computer can control the process by means of a program.
- A program is a set of instructions that specify the operations, operands, and the sequence by which processing has to occur.
- The data processing task maybe altered by specifying a new program with different instructions or specifying the same instructions with different data.

- A computer instruction is a binary code that specifies a sequence of micro operations for the computer. Instructions codes together with data are stored in memory.
- The computer reads each instruction from memory and places it in a control register. The control then interprets the binary code of the instruction and proceeds to execute it by issuing a sequence of micro operations.
- Every computer has its own instruction set. The ability to store and execute, the stored program concept, is the most important property of a general purpose computer.
- An instruction code is a group of bits that instruct the computer to perform a specific operation. It usually divided into two parts, each having its own particular interpretation.

- The most basic part of an instruction code is its <u>operation part</u>. The operation code of an instruction is a group of bits that <u>define such</u> <u>operations as add, subtract, multiply, shift and complement.</u>
- As an illustration, consider a computer with 64 distinct operations. One of them being an ADD operation. When this <u>operation code is</u> <u>decoded in the control unit</u>, the computer <u>issues control signals</u> <u>to read an operand from memory and add the operand to a</u> <u>processor register.</u>
- The relationship between a computer operation and a micro operation. An operation is a part of an instruction stored in computer memory. It is a binary code that <u>tells the computer to</u> <u>perform a specific operation.</u>
- The control unit receives the instruction from memory and interprets the computer code bits.

- It then issues a sequence of control signals to initiate micro operations in internal computer registers.
- For every operation code, the control issues a sequence of micro operations needed for the hardware implementation of the specified operation.
- For this reason, an operation code is sometimes called a macro operations because it specifies a set of micro operations.
- The operation part of an instruction code specifies the operation to be performed. This operation must be performed on some data stored in processor

- Instruction Code specifies operation and registers where the operands are to be found.
- Instruction Code format with two parts

OPCODE	ADDRESS

- Opcode specifies the operation to be performed
- Address tells the control where to find an operand in memory.

Memory

Instruction Format

INSTRUCTIONS (PROGRAM) OPERANDS (DATA)

STORED PROGRAM ORGANIZATION

PROCESSOR REGISTERS

COMMON BUS SYSTEM

BASIC COMPUTER HAS

- **EIGHT REGISTERS**
- MEMORY UNIT
- CONTROL UNIT
- Path must be provided to transfer information from one register to another and between memory and registers.
- The number of wires will be excessive if connections are made between the o/p of each register and i/p of other registers.
- A more efficient scheme of transferring the information in a system with many registers is to use a common bus

Lectures 6-10:

Basic Computer Organization and Design

5

Computer Instructions

- Computer instruction code format has 16 bits
- OPCODE : part of the instruction contains three bits and the meaning of the 13 bits depends upon the operation code encountered.

Computer instruction are of three types

- Memory reference instruction
- Register reference instruction
- Input-output instruction

Memory reference instruction

Lectures 6-10:

Basic Computer Organization and Design

з

Register reference instruction

- They are recognized by the OPCOde 111 and o with the left most bit
- The other 12 bits specifies the operation.
- Register reference instruction specifies operation on register.
- So, does not need any reference to memory

Input-output instruction

- They are recognized by the OPCOde 111 and 1 with the left most bit
- The other 12 bits specifies the operation.
- Input-output instruction does not need any reference to memory

Lectures 6-10: Basic Computer Organization and Design 6	Section 5-3: Instructions
COMPUTER(BC) INSTRUCTIO	SNS
Basic Computer Instruction code format	
Memory-Reference Instructions(OP-code	= 000 ~ 110)
15 14 12 11 0 I Opcode Address Register-Reference Instructions(OP-code 15 12 11 0 1 1 0 1 1	e = 111, I = 0)
Input-Output Instructions (OP-code =111	, I = 1)
15 12 11 0 1 1 1 1 1 1/O operation	