


 Control unit 
 Timing  and  control 
 Timing  signals 
 Pipelining  and  vector  processing 
 Parallel  processing 
 Pipeline  and  multiple  function  units 
 Instruction  cycle 



 Control unit (CU) of a processor translates from machine instructions 
to the control signals for the microoperations that implement them 
 

 Control units are implemented in one of two ways 
 Hardwired Control 

 CU is made up of sequential and combinational circuits to 
generate the control signals 

 Microprogrammed Control 

 A control memory on the processor contains microprograms that 
activate the necessary control signals 

 
 We will consider a hardwired implementation of the control unit for 

the Basic Computer 

Instruction codes 



Control unit of Basic Computer 
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- Generated by 4-bit sequence counter and 416 decoder 
- The SC can be incremented or cleared. 
 
- Example:   T0, T1, T2, T3, T4, T0, T1, . . . 
       Assume: At time T4, SC is cleared to 0 if decoder output D3 is active. 

D3T4: SC   0 

Timing and control 



• Parallel Processing 
 
• Pipelining 
 
• Arithmetic Pipeline 
 
• Instruction Pipeline 
 

 



Levels of Parallel Processing  

- Job or Program level 
 
- Task or Procedure level 
 
- Inter-Instruction level 
 
- Intra-Instruction level 

Execution of Concurrent Events  in the computing  

process to achieve faster Computational Speed  and 

 throughput. 

  

Parallel Processing 



R1  Ai,  R2  Bi        Load Ai and Bi 

R3  R1 * R2,  R4  Ci    Multiply and load Ci 

R5  R3 + R4        Add  

A technique of decomposing a sequential process  
into suboperations, with each subprocess being  
executed in a partial dedicated segment that  
operates concurrently with all other segments.  

Ai * Bi + Ci    for i = 1, 2, 3, ... , 7 
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Clock 
Pulse 

Segment 1 Segment 2 Segment 3 
 Number     R1       R2           R3            R4      R5                      
      1            A1       B1      
   2            A2       B2         A1 * B1     C1  
   3            A3       B3         A2 * B2     C2          A1 * B1 + C1 
   4            A4       B4         A3 * B3     C3          A2 * B2 + C2 
   5            A5       B5         A4 * B4     C4          A3 * B3 + C3 
   6            A6       B6         A5 * B5     C5          A4 * B4 + C4 
   7            A7       B7         A6 * B6     C6          A5 * B5 + C5 
   8            A7 * B7      C7          A6 * B6 + C6 
   9                A7 * B7 + C7 

 

Pipelining 



General Structure of a 4-Segment Pipeline 
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n:   Number of tasks to be performed 
 

Conventional Machine (Non-Pipelined) 
tn:    Clock cycle  
t1:    Time required to complete the n tasks 
t1 = n * tn 

 
Pipelined Machine (k stages) 

tp:   Clock cycle (time to complete each suboperation) 
tk:   Time required to complete the n tasks 
tk = (k + n - 1) * tp 

 
Speedup 

Sk:   Speedup 
 
         Sk = n*tn / (k + n - 1)*tp 

 
 

 

  

      

n    
Sk  = 

tn 

tp 

(  = k,  if tn = k * tp ) lim 
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Multiple Functional Units 

Example 
     - 4-stage pipeline 
     - subopertion in each stage;  tp = 20nS 
     - 100 tasks to be executed 
     - 1 task in non-pipelined system;  20*4 = 80nS 
       
        Pipelined System 
                     (k + n - 1)*tp = (4 + 99) * 20 = 2060nS 
 
        Non-Pipelined System 
                n*k*tp = 100 * 80 = 8000nS 
 
        Speedup 
                Sk = 8000 / 2060 = 3.88  
 
        4-Stage Pipeline is basically identical to the system 
        with 4 identical function units  

Pipelining 



Floating-point adder 

[1]  Compare the exponents 
[2]  Align the mantissa 
[3]  Add/sub the mantissa 
[4]  Normalize the result 

X = A x 2a 
Y = B x 2b 
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Arithmetic Pipeline 

X=0.9504* 103 
Y= 0.8200*102 
    
X=0.9504* 103 
Y= 0.0820*103 
 
Z=1.0324*103 
 
Z=0.1032*103 



Six Phases* in an Instruction Cycle 
 

[1]  Fetch an instruction from memory 
[2]  Decode the instruction 
[3]  Calculate the effective address of the operand 
[4]  Fetch the operands from memory 
[5]  Execute the operation 
[6]  Store the result in the proper place 
 
* Some instructions skip some phases 
* Effective address calculation can be done in 
   the part of the decoding phase 
* Storage of the operation result into a register  
   is done automatically in the execution phase 
 
==> 4-Stage Pipeline 
[1]  FI:    Fetch an instruction from memory 
[2]  DA:  Decode the instruction and calculate 
               the effective address of the operand 
[3]  FO:  Fetch the operand 
[4]  EX:  Execute the operation 

Instruction Pipeline 



Execution of Three Instructions in a 4-Stage Pipeline  
 

Instruction Pipeline 
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