CAO: Lecture 23
Implementation of control unit,
Enhancing performance with

pipelining

Topics Covered

Control unit

Timing and control

Timing signals

Pipelining and vector processing
Parallel processing

Pipeline and multiple function units
nstruction cycle

CONTROL UNIT

Control unit (CU) of a processor translates from machine instructions
to the control signals for the microoperations that implement them

Control units are implemented in one of two ways
Hardwired Control

CU is made up of sequential and combinational circuits to
generate the control signals
Microprogrammed Control

A control memory on the processor contains microprograms that
activate the necessary control signals

We will consider a hardwired implementation of the control unit for
the Basic Computer

TIMING AND CONTROL

Instruction register (IR)

L15] 1[' 1[’ T I 11-0 | Other inputs
. 3x8 :
: decoder > :
: 7 6543 210
: W Dg o :
: | *1 Combinational
: D7 Control A—-—»CO””O'
: - logic signals
. - .
. 115 >
: T
t
. 15 14210
. 4x 16
. decoder
4-bit <«——— Increment (INR)
. sequence |e——— Clear (CLR)
. counter
: (SC) <J+—— Clock
Secesoesesonsesessesessesessssessssesessesessesessesessssessssesensasest

TIMING SIGNALS

= Example To, Tl’ T2, T3, T4, To, Tl’ . s
Assume: At time T,, SC is cleared to O if decoder output D3 is active.

D,T,: SC« 0

TO T1 T2 T3 T4 TO
Clock

o N\
T1 \
T2 \
T3 \
T4 \

D3

CLR N\ \

SC

PIPELINING AND VECTOR PROCESSING

e Parallel Processing
e Pipelining
e Arithmetic Pipeline

e Instruction Pipeline

PARALLEL PROCESSING

Execution of Concurrent Events in the computing

process to achieve faster Computational Speed and

throughput.
Levels of Parallel Processing

- Job or Program level
- Task or Procedure level
- Inter-Instruction level

- Intra-Instruction level

PIPELINING

A"technique of decomposing a sequential process
into suboperations, with each subprocess being
executed in a partial dedicated segment that
operates concurrently with all other segments.

A*B+C fori=1,2,3,..,7

- A B, Memory
Segment 1
[s | [_r |
Multiplier
Segment 2
[& 1 [g]
—
Adder
Segment 3
| R5 I
R1< A, R2 < B, Load A, and B,

R3 < R1*R2, R4« C, Multiply and load C,
R5 <« R3+R4 Add

OPERATIONS IN EACH PIPELINE STAGE

Clock | segment 1 Segment 2 Segment 3

NUHsBer R1 RJ R3 RA RS
1 Al Bl
2 A2 B2 Al*Bl1 (1
3 A3 B3 A2 *B2 C2 Al *Bl+ (1
4 A4 B4 A3 *B3 C3 A2 *B2 + (2
5 A5 B5 A4 *B4 C4 A3 *B3 + (3
6 A6 B6 A5 * B5 (f Ad *B4 + (4
7 A7 B7 A6 * B6 C$ A5 * B5 + (5
8 A7 *B7 C7 A6 * B6 + Cb
9 A7 *B7 + C7

GENERAL PIPELINE

General Structure of a 4-Segment Pipeline

Space-Time Diagram

2131 41c 171310 Clock cycles
Segment1 | T11 T2 T3] T4] T5] T6

2 T1] 12| 13| T4| 5] T6
3 T1] 120 13| T4 T5{ TA
4 Tl T2l 131 T4l T8l 16

PIPELINE SPEEDUP

n: Number of tasks to be performed

Conventional Machine (Non-Pipelined)

t,: Clock cycle
T,: Time required to complete the n tasks
T,=n*t,

Pipelined Machine (k stages)

t,: Clock cycle (time to complete each suboperation)
T.. Time required to complete the n tasks
T.=(k+n-1)*t

Speedup
S,: Speedup

S, =n*t,/(k+n-1)*t

. t,
lim S, =
n — oo tp

(=k ift,=k*t))

PIPELINE AND MULTIPLE FUNCTION UNITS

Example
- 4-stage pipeline
- subopertion in each stage; t, =20nS
- 100 tasks to be executed
- 1 task in non-pipelined system; 20*4 = 80nS

Pipelined System
(k+n-1)*t, =(4+99)* 20 = 2060nS

i li+1 li+2 li+3
Non-Pipelined System l l l l
n*k*t, = 100 * 80 = 8000nS
P, =5 P Py
Speedup
S, = 8000 / 2060 = 3.88 l l l l

4-Stage Pipeline is basically identical to the system
with 4 identical function units

Multiple Functional Units

ARITHMETIC PIPELINE

F|Oating—p0int adder Eiponents] I\/Iiantissasf
X = A X 23 l-:-:-:-:-:-:-:-:-:-:-:Q-:-:-:-:-:l-:-:-:-:-:-:-l | {BSRRRRRRRRR " SRRRARRARRHE |
Y=Bx2b l
Segment 1: Compare Difference

[1] Compare the exponents ' Sxponents

[2] Align the mantissa h AR

[3] Add/sub the mantissa Eo i]

[4] Normalize the result sogment2: | I o
X=09504* 103 Iri]
Y=0.8200*102

>egment 3 A ot
X=09504* 103 I:1:1:1:1:1:1:1:1:1:3:3""1:1:1:1:1:1:1:1:1:1:1:] |;:;:;:;:;:;:;:;:;:::;:-'l-:;:;:;:;:;:;:::::::::::l
Y=0.0820*103 i i

Segment 4: Adjust - Normalize
7=1.0324*103 lt l

7=0.1032*103 ':':':':':':':':':':':"i':':':':':':':***'il e i ______________________]

INSTRUCTION CYCLE

[1] Fetch an instruction from memory

[2] Decode the instruction

[3] Calculate the effective address of the operand
[4] Fetch the operands from memory

[5] Execute the operation

[6] Store the result in the proper place

Six Phases™® in an Instruction Cycle

* Some instructions skip some phases

* Effective address calculation can be done in
the part of the decoding phase

* Storage of the operation result into a register
is done automatically in the execution phase

==> 4-Stage Pipeline

[1] FI: Fetch an instruction from memory

[2] DA: Decode the instruction and calculate
the effective address of the operand

[3] FO: Fetch the operand

[4] EX: Execute the operation

INSTRUCTION PIPELINE

Execution of Three Instructions in a 4-Stage Pipeline

Conventional

i+1 | FI DA | FO | EX

i+2 | FI | DA | FO | EX

Pipelined

i+1 | FI DA | FO | EX

i+2 | FI | DA | FO | EX

INSTRUCTION EXECUTION IN A 4-STAGE PIPELINE

Fetch instruction

Segmentl: from memory

Decodde inlstrTJction
Segment2: and calculate
& effective address

Branch?

no

Fetch operand
from memory

yes

Segment3:

Segment4: | Execute instruction |

Interrupt € W
handling

no
Step: 1 2 3 4 5 6 7 8 9 Ji0 J11 J 12 |13
Instruction 1 FI DA | FO | EX
2 Fl DA | FO | EX
(Branch) 3 Fl DA | FO | EX
4 Fl = = Fl DA | FO] EX
5 = = = |F DA | FO | EX
6 Fi DA | FO | EX
7 Fl DA | FO | EX

