

 Control unit
 Timing and control
 Timing signals
 Pipelining and vector processing
 Parallel processing
 Pipeline and multiple function units
 Instruction cycle

 Control unit (CU) of a processor translates from machine instructions
to the control signals for the microoperations that implement them

 Control units are implemented in one of two ways
 Hardwired Control

 CU is made up of sequential and combinational circuits to
generate the control signals

 Microprogrammed Control

 A control memory on the processor contains microprograms that
activate the necessary control signals

 We will consider a hardwired implementation of the control unit for

the Basic Computer

Instruction codes

Control unit of Basic Computer

Timing and control

Instruction register (IR)

15 14 13 12 11 - 0

3 x 8
 decoder

 7 6 5 4 3 2 1 0

I

D 0

15 14 2 1 0
4 x 16
 decoder

4-bit
 sequence

 counter
 (SC)

Increment (INR)

Clear (CLR)

Clock

Other inputs

Control
signals

D

T

T

7

15

0

Combinational
Control

logic

Clock

T0 T1 T2 T3 T4 T0

T0

T1

T2

T3

T4

D3

CLR
SC

- Generated by 4-bit sequence counter and 416 decoder
- The SC can be incremented or cleared.

- Example: T0, T1, T2, T3, T4, T0, T1, . . .
 Assume: At time T4, SC is cleared to 0 if decoder output D3 is active.

D3T4: SC  0

Timing and control

• Parallel Processing

• Pipelining

• Arithmetic Pipeline

• Instruction Pipeline

Levels of Parallel Processing

- Job or Program level

- Task or Procedure level

- Inter-Instruction level

- Intra-Instruction level

Execution of Concurrent Events in the computing

process to achieve faster Computational Speed and

 throughput.

Parallel Processing

R1  Ai, R2  Bi Load Ai and Bi

R3  R1 * R2, R4  Ci Multiply and load Ci

R5  R3 + R4 Add

A technique of decomposing a sequential process
into suboperations, with each subprocess being
executed in a partial dedicated segment that
operates concurrently with all other segments.

Ai * Bi + Ci for i = 1, 2, 3, ... , 7

Ai

R1 R2

Multiplier

R3 R4

Adder

R5

Memory

Pipelining

Bi Ci

Segment 1

Segment 2

Segment 3

Clock
Pulse

Segment 1 Segment 2 Segment 3
 Number R1 R2 R3 R4 R5
 1 A1 B1
 2 A2 B2 A1 * B1 C1
 3 A3 B3 A2 * B2 C2 A1 * B1 + C1
 4 A4 B4 A3 * B3 C3 A2 * B2 + C2
 5 A5 B5 A4 * B4 C4 A3 * B3 + C3
 6 A6 B6 A5 * B5 C5 A4 * B4 + C4
 7 A7 B7 A6 * B6 C6 A5 * B5 + C5
 8 A7 * B7 C7 A6 * B6 + C6
 9 A7 * B7 + C7

Pipelining

General Structure of a 4-Segment Pipeline

S R 1 1 S R 2 2 S R 3 3 S R 4 4 Input

Clock

Space-Time Diagram

1 2 3 4 5 6 7 8 9

T1

T1

T1

T1

T2

T2

T2

T2

T3

T3

T3

T3 T4

T4

T4

T4 T5

T5

T5

T5 T6

T6

T6

T6
Clock cycles

Segment 1

2

3

4

Pipelining

n: Number of tasks to be performed

Conventional Machine (Non-Pipelined)
tn: Clock cycle
t1: Time required to complete the n tasks
t1 = n * tn

Pipelined Machine (k stages)

tp: Clock cycle (time to complete each suboperation)
tk: Time required to complete the n tasks
tk = (k + n - 1) * tp

Speedup

Sk: Speedup

 Sk = n*tn / (k + n - 1)*tp

n  
Sk =

tn

tp

(= k, if tn = k * tp) lim

Pipelining

P1

I i

P2

I i+1

P3

I i+2

P4

I i+3

Multiple Functional Units

Example
 - 4-stage pipeline
 - subopertion in each stage; tp = 20nS
 - 100 tasks to be executed
 - 1 task in non-pipelined system; 20*4 = 80nS

 Pipelined System
 (k + n - 1)*tp = (4 + 99) * 20 = 2060nS

 Non-Pipelined System
 n*k*tp = 100 * 80 = 8000nS

 Speedup
 Sk = 8000 / 2060 = 3.88

 4-Stage Pipeline is basically identical to the system
 with 4 identical function units

Pipelining

Floating-point adder

[1] Compare the exponents
[2] Align the mantissa
[3] Add/sub the mantissa
[4] Normalize the result

X = A x 2a
Y = B x 2b

R

Compare
 exponents

 by subtraction

a b

R

Choose exponent

Exponents

R

A B

Align mantissa

Mantissas

Difference

R

Add or subtract
 mantissas

R

Normalize
 result

R

R

Adjust
 exponent

R

Segment 1:

Segment 2:

Segment 3:

Segment 4:

Arithmetic Pipeline

X=0.9504* 103
Y= 0.8200*102

X=0.9504* 103
Y= 0.0820*103

Z=1.0324*103

Z=0.1032*103

Six Phases* in an Instruction Cycle

[1] Fetch an instruction from memory
[2] Decode the instruction
[3] Calculate the effective address of the operand
[4] Fetch the operands from memory
[5] Execute the operation
[6] Store the result in the proper place

* Some instructions skip some phases
* Effective address calculation can be done in
 the part of the decoding phase
* Storage of the operation result into a register
 is done automatically in the execution phase

==> 4-Stage Pipeline
[1] FI: Fetch an instruction from memory
[2] DA: Decode the instruction and calculate
 the effective address of the operand
[3] FO: Fetch the operand
[4] EX: Execute the operation

Instruction Pipeline

Execution of Three Instructions in a 4-Stage Pipeline

Instruction Pipeline

FI DA FO EX

FI DA FO EX

FI DA FO EX

i

i+1

i+2

Conventional

Pipelined

FI DA FO EX

FI DA FO EX

FI DA FO EX

i

i+1

i+2

1 2 3 4 5 6 7 8 9 10 12 13 11

FI DA FO EX 1

FI DA FO EX

FI DA FO EX

FI DA FO EX

FI DA FO EX

FI DA FO EX

FI DA FO EX

2

3

4

5

6

7

FI

Step:

Instruction

(Branch)

Instruction Pipeline

Fetch instruction
 from memory

Decode instruction
 and calculate

 effective address

Branch?

Fetch operand
 from memory

Execute instruction

Interrupt? Interrupt
 handling

Update PC

Empty pipe

no

yes

yes
no

Segment1:

Segment2:

Segment3:

Segment4:

