

 Goals of Parallelism
 Exploitation of Concurrency
 Types of Parallelism
 Instruction Pipeline
 Four segment CPU Pipeline
 Timing of Instruction Pipeline
 Pipeline Conflicts
 Instruction-level parallelism (ILP)
 Processor Level Parallelism

 Executing two or more operations at the same time is known
as Parallelism.

Goals of Parallelism:
 The purpose of parallel processing is to speedup the

computer processing capability or in words, it increases the
computational speed.

 Increases throughput, i.e. amount of processing that can be
accomplished during a given interval of time.

 Improves the performance of the computer for a given clock
speed.

 Two or more ALUs in CPU can work concurrently to increase
throughput.

 The system may have two or more processors operating
concurrently.

Techniques of Concurrency:
 Overlap : execution of multiple operations by heterogenous functional

units.
 Parallelism : execution of multiple operations by homogenous functional

units.

Throughput Enhancement
 A computer’s performance is measured by the time taken for executing a

program.
 The program execution involves performing instruction cycles, which

includes two types of operations:
 Internal Micro-operations: performed inside the hardware functional

units such as the processor, memory, I/O etc.
 Transfer of information: between different functional hardware units for

Instruction fetch, operand fetch, I/O operation etc.

Types of Parallelism:

Instruction Level Parallelism (ILP)
 Pipelining
 Superscalar

Processor Level Parallelism
 Array Computer
 Multiprocessor

 An instruction pipeline reads consecutive instructions from
memory while previous instructions are being executed in
other segments.

 Computer needs to process each instruction with the
following sequence of steps.

 Fetch the instruction from memory
 Decode the instruction
 Calculate the effective address
 Fetch the operands from memory
 Execute the instruction
 Store the result in the proper place

 Fetch Instruction

Decode & calculate

effective Address

Branch?

Fetch Operand

Execute Instruction

Interrupt

?

Interrupt

handling

Update PC

Empty

Pipe

Yes

No

No
Yes

Step 1 2 3 4 5 6 7 8 9 10 11 12 13

1 FI DA FO EX

2 FI DA FO

3 FI DA

4 FI - - FI DA FO EX

5 - - - FI DA FO EX

6 FI DA FO EX

7 FI DA FO EX

Instruction

 Resource conflicts caused by access to memory by two
segments at the same time. These may be resolved by using
separate instruction and data memories.

 Data Dependency conflicts arise when an instruction
depends on the result of a previous instruction, but this
result is not yet available.

 Branch Difficulties arise from branch and other instructions
that change the value of PC.

 Instruction-level parallelism (ILP) is a measure of how many of the
operations in a computer program can be performed simultaneously.

 Micro-architectural techniques that are used to exploit ILP include:
 Instruction pipelining where the execution of multiple instructions can be

partially overlapped.

 Superscalar execution in which multiple execution units are used to
execute multiple instructions in parallel. In typical superscalar processors,
the instructions executing simultaneously are adjacent in the original
program order.

http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Instruction_pipelining
http://en.wikipedia.org/wiki/Superscalar
http://en.wikipedia.org/wiki/Execution_unit

 A superscalar CPU architecture implements a form of parallelism called
instruction-level parallelism within a single processor.

 It therefore allows faster CPU throughput than would otherwise be

possible at a given clock rate.

 A superscalar processor executes more than one instruction during a

clock cycle by simultaneously dispatching multiple instructions to
redundant functional units on the processor.

 Each functional unit is not a separate CPU core but an execution resource

within a single CPU such as an arithmetic logic unit, a bit shifter, or a
multiplier.

 While a superscalar CPU is typically also pipelined.

 Pipelining and Superscalar architecture are considered different

performance enhancement techniques.

http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Parallel_computer
http://en.wikipedia.org/wiki/Instruction_level_parallelism
http://en.wikipedia.org/wiki/Instruction_level_parallelism
http://en.wikipedia.org/wiki/Instruction_level_parallelism
http://en.wikipedia.org/wiki/Throughput
http://en.wikipedia.org/wiki/Clock_rate
http://en.wikipedia.org/wiki/Arithmetic_logic_unit
http://en.wikipedia.org/wiki/Multiplication_ALU
http://en.wikipedia.org/wiki/Pipeline_(computing)

 Instructions are issued from a sequential instruction stream.
 CPU hardware dynamically checks for data dependencies between

instructions at run time (versus software checking at compile time)
 The CPU accepts multiple instructions per clock cycle.

 Available performance improvement from superscalar techniques is

limited by two key areas:
 The degree of intrinsic parallelism in the instruction stream, i.e. limited

amount of instruction-level parallelism, and
 The complexity and time cost of the dispatcher and associated

dependency checking logic.
 The branch instruction processing.

http://en.wikipedia.org/wiki/Data_dependencies
http://en.wikipedia.org/wiki/Data_dependencies
http://en.wikipedia.org/wiki/Data_dependencies
http://en.wikipedia.org/wiki/Compile_time
http://en.wikipedia.org/wiki/Compile_time
http://en.wikipedia.org/wiki/Compile_time

 Multiprocessing is the use of two or more central processing units
(CPUs) within a single computer system.

 The term also refers to the ability of a system to support more than one
processor and/or the ability to allocate tasks between them.

 Multiprocessing sometimes refers to the execution of multiple concurrent
software processes in a system as opposed to a single process at any one
instant.

 The terms multitasking or multiprogramming are more appropriate to
describe this concept, which is implemented mostly in software, whereas
multiprocessing is more appropriate to describe the use of multiple
hardware CPUs.

 A system can be both multiprocessing and multiprogramming, only one
of the two, or neither of the two.

 In a multiprocessing system, all CPUs may be equal, or some may be
reserved for special purposes.

http://en.wikipedia.org/wiki/CPU
http://en.wikipedia.org/wiki/CPU
http://en.wikipedia.org/wiki/CPU
http://en.wikipedia.org/wiki/CPU
http://en.wikipedia.org/wiki/CPU
http://en.wikipedia.org/wiki/Computer_multitasking
http://en.wikipedia.org/wiki/Computer_multitasking

 In multiprocessing, the processors can be used to execute a
single sequence of instructions in multiple contexts

 In a single instruction stream, single data stream or SISD,
one processor sequentially processes instructions, each
instruction processes one data item.

 Single-instruction, multiple-data or SIMD, often used in
vector processing

 Multiple sequences of instructions in a single context
multiple-instruction, single-data or MISD, used to describe
pipelined processors.

 Multiple sequences of instructions in multiple contexts
(multiple-instruction, multiple-data or MIMD.

http://en.wikipedia.org/wiki/SISD
http://en.wikipedia.org/wiki/SISD
http://en.wikipedia.org/wiki/SISD
http://en.wikipedia.org/wiki/SISD
http://en.wikipedia.org/wiki/SISD
http://en.wikipedia.org/wiki/SISD
http://en.wikipedia.org/wiki/SISD
http://en.wikipedia.org/wiki/SISD
http://en.wikipedia.org/wiki/SISD
http://en.wikipedia.org/wiki/SISD
http://en.wikipedia.org/wiki/SISD
http://en.wikipedia.org/wiki/SIMD
http://en.wikipedia.org/wiki/SIMD
http://en.wikipedia.org/wiki/SIMD
http://en.wikipedia.org/wiki/SIMD
http://en.wikipedia.org/wiki/SIMD
http://en.wikipedia.org/wiki/SIMD
http://en.wikipedia.org/wiki/SIMD
http://en.wikipedia.org/wiki/Vector_processing
http://en.wikipedia.org/wiki/Vector_processing
http://en.wikipedia.org/wiki/Vector_processing
http://en.wikipedia.org/wiki/MISD
http://en.wikipedia.org/wiki/MISD
http://en.wikipedia.org/wiki/MISD
http://en.wikipedia.org/wiki/MISD
http://en.wikipedia.org/wiki/MISD
http://en.wikipedia.org/wiki/MISD
http://en.wikipedia.org/wiki/MISD
http://en.wikipedia.org/wiki/MIMD
http://en.wikipedia.org/wiki/MIMD
http://en.wikipedia.org/wiki/MIMD
http://en.wikipedia.org/wiki/MIMD
http://en.wikipedia.org/wiki/MIMD
http://en.wikipedia.org/wiki/MIMD
http://en.wikipedia.org/wiki/MIMD
http://en.wikipedia.org/wiki/MIMD

