

 Memory organization
 Memory hierarchy
 Main memory
 Memory address map
 Connection of memory to cpu
 Auxiliary memory
 Associative memory
 Cache memory

• Memory Hierarchy

• Main Memory

• Auxiliary Memory

• Associative Memory

• Cache Memory

• Cache mapping

Magnetic
 tapes

Magnetic
 disks

I/O
 processor

CPU

Main
 memory

Cache
 memory

Auxiliary memory

Register

Cache

Main Memory

Magnetic Disk

Magnetic Tape

Memory Hierarchy is to obtain the highest possible
access speed while minimizing the total cost of the memory system

RAM and ROM Chips

Typical RAM chip

Typical ROM chip

Chip select 1

Chip select 2

Read

Write

7-bit address

CS1

CS2

RD

WR

AD 7

128 x 8
 RAM

8-bit data bus

CS1 CS2 RD WR
 0 0 x x
 0 1 x x
 1 0 0 0
 1 0 0 1
 1 0 1 x
 1 1 x x

Memory function
 Inhibit
 Inhibit
 Inhibit
 Write
 Read
 Inhibit

State of data bus
 High-impedence
 High-impedence
 High-impedence
 Input data to RAM
 Output data from RAM
 High-impedence

Chip select 1

Chip select 2

9-bit address

CS1

CS2

AD 9

512 x 8
 ROM

8-bit data bus

Main Memory

RAM 1
RAM 2
RAM 3
RAM 4
ROM

0000 - 007F
0080 - 00FF
0100 - 017F
0180 - 01FF
0200 - 03FF

Component
Hexa

address

0 0 0 x x x x x x x
0 0 1 x x x x x x x
0 1 0 x x x x x x x
0 1 1 x x x x x x x
1 x x x x x x x x x

10 9 8 7 6 5 4 3 2 1

Address bus

Memory Connection to CPU

- RAM and ROM chips are connected to a CPU
 through the data and address buses

- The low-order lines in the address bus select
 the byte within the chips and other lines in the
 address bus select a particular chip through
 its chip select inputs

Address space assignment to each memory chip

Example: 512 bytes RAM and 512 bytes ROM

Main Memory

Main Memory

}

CS1
CS2
RD
WR
AD7

128 x 8
 RAM 1

CS1
CS2
RD
WR
AD7

128 x 8
 RAM 2

CS1
CS2
RD
WR
AD7

128 x 8
 RAM 3

CS1
CS2
RD
WR
AD7

128 x 8
 RAM 4

Decoder
3 2 1 0

WR RD 9 8 7-1 10 16-11
Address bus

Data bus

CPU

CS1
CS2

512 x 8
 ROM AD9

1- 7

9
8

D
a

ta

D
a

ta

D
a

ta

D
a

ta

D
a

ta

Information Organization on Magnetic Tapes

EOF

IRG

block 1 block 2

block 3

block 1

block 2

block 3

R1
R2 R3 R4

R5
R6

R1
R3 R2

 R5 R4

file i

EOF

Organization of Disk Hardware

Track

Moving Head Disk Fixed Head Disk

Auxiliary Memory

- Accessed by the content of the data rather than by an address

- Also called Content Addressable Memory (CAM)

Hardware Organization
Argument register(A)

Key register (K)

Associative memory
 array and logic

m words
 n bits per word

Match
 register

Input

Read

Write

M

- Compare each word in CAM in parallel with the
 content of A(Argument Register)
- If CAM Word[i] = A, M(i) = 1
- Read sequentially accessing CAM for CAM Word(i) for M(i) = 1
- K(Key Register) provides a mask for choosing a
 particular field or key in the argument in A
 (only those bits in the argument that have 1’s in
 their corresponding position of K are compared)

Associative Memory

EXAMPLE:-

A 101 111100
K 111 000000
WORD1 100 111100 NO MATCH
WORD2 101 000001 MATCH

Internal organization of a typical cell Cij

C11 Word 1

Word i

Word m

Bit 1 Bit j Bit n

M1

Mi

Mm

Associative Memory

Aj

R S

Output

Match
 logic

Input

Write

Read

Kj

M i To F ij

A1 Aj An

K1 Kj Kn

C1j C1n

Ci1 Cij Cin

Cm1 Cmj Cmn

Cij cell for bit j in word i

i->word no
J->bit position in word

Fij-flip flop storage element

Associative Memory

F' i1 F i1

K 1 A 1

F' i2 F i2

K 2 A 2

F' in F in

K n A n

. . . .

M i

1) Neglet Kj First
Xj= Aj Fij +Aj’Fij’

Mi=x1x2x3……………xn

2) Now include Kj

Xj+kj’={ xj if kj=1

 1 if kj=0

Mi=(X1+K1’) (X2+K2’) (X3+K3’)………(Xn+Kn’)

Or

Mi=Π(AjFij+Aj’Fij’+kj’) 1< j<n

Locality of Reference
 - The references to memory at any given time
 interval tend to be confined within a localized areas
 - This area contains a set of information and
 the membership changes gradually as time goes by
 - Temporal Locality
 The information which will be used in near future
 is likely to be in use already(e.g. Reuse of information in loops)
 - Spatial Locality
 If a word is accessed, adjacent(near) words are likely accessed soon
 (e.g. Related data items (arrays) are usually stored together;
 instructions are executed sequentially)
Cache
 - The property of Locality of Reference makes the
 Cache memory systems work
 - Cache is a fast small capacity memory that should hold those information
 which are most likely to be accessed

Cache Memory

Main memory

Cache memory

CPU

All the memory accesses are directed first to Cache
If the word is in Cache; Access cache to provide it to CPU
If the word is not in Cache; Bring a block (or a line) including
that word to replace a block now in Cache

 - How can we know if the word that is required
 is there ?
 - If a new block is to replace one of the old blocks,
 which one should we choose ?

Memory Access

Performance of Cache Memory System

 Hit Ratio - % of memory accesses satisfied by Cache memory system
 Te: Effective memory access time in Cache memory system
 Tc: Cache access time
 Tm: Main memory access time

 Te = Tc + (1 - h) Tm

 Example: Tc = 0.4 s, Tm = 1.2s, h = 0.85%
 Te = 0.4 + (1 - 0.85) * 1.2 = 0.58s

Cache Memory

Associative mapping
Direct mapping
Set-associative mapping

Associative Mapping

Mapping Function :Specification of correspondence between main
 memory blocks and cache blocks

- Any block location in Cache can store any block in memory
 -> Most flexible
- Mapping Table is implemented in an associative memory
 -> Fast, very Expensive
- Mapping Table
 Stores both address and the content of the memory word

 address (15 bits)

Argument register

Address Data

0 1 0 0 0

0 2 7 7 7

2 2 2 3 5

3 4 5 0

6 7 1 0

1 2 3 4

CAM

Cache Memory

Addressing Relationships

Direct Mapping Cache Organization
Memory
 address Memory data

00000 1 2 2 0

00777

01000

01777

02000

02777

2 3 4 0

3 4 5 0

4 5 6 0
5 6 7 0

6 7 1 0

Index
 address Tag Data

000 0 0 1 2 2 0

0 2 6 7 1 0 777

Cache memory

Tag(6) Index(9)

32K x 12

Main memory
Address = 15 bits
 Data = 12 bits

512 x 12

Cache memory
Address = 9 bits
 Data = 12 bits

00 000

77 777

000

777

- Each memory block has only one place to load in Cache
- Mapping Table is made of RAM instead of CAM
- n-bit memory address consists of 2 parts; k bits of Index field and n-k bits of Tag field
- n-bit addresses are used to access main memory and k-bit Index is used to access the Cache

Cache Memory

Direct Mapping with block size of 8 words

Operation
 - CPU generates a memory request with (TAG;INDEX)
 - Access Cache using INDEX ; (tag; data)
 Compare TAG and tag
 - If matches -> Hit
 Provide Cache[INDEX](data) to CPU
 - If not match -> Miss
 M[tag;INDEX] <- Cache[INDEX](data)
 Cache[INDEX] <- (TAG;M[TAG; INDEX])
 CPU <- Cache[INDEX](data)

Index tag data

000 0 1 3 4 5 0

007 0 1 6 5 7 8

010

017

770 0 2

777 0 2 6 7 1 0

Block 0

Block 1

Block 63

Tag Block Word

6 6 3

INDEX

Cache Memory

Set Associative Mapping Cache with set size of two

- Each memory block has a set of locations in the Cache to load

Index Tag Data

000 0 1 3 4 5 0 0 2 5 6 7 0

Tag Data

777 0 2 6 7 1 0 0 0 2 3 4 0

Operation
 - CPU generates a memory address(TAG; INDEX)
 - Access Cache with INDEX, (Cache word = (tag 0, data 0); (tag 1, data 1))
 - Compare TAG and tag 0 and then tag 1
 - If tag i = TAG -> Hit, CPU <- data i
 - If tag i TAG -> Miss,
 Replace either (tag 0, data 0) or (tag 1, data 1),
 Assume (tag 0, data 0) is selected for replacement,
 (Why (tag 0, data 0) instead of (tag 1, data 1) ?)
 M[tag 0, INDEX] <- Cache[INDEX](data 0)
 Cache[INDEX](tag 0, data 0) <- (TAG, M[TAG,INDEX]),
 CPU <- Cache[INDEX](data 0)

Cache Memory

Many different block replacement policies are available
LRU(Least Recently Used) is most easy to implement

 Cache word = (tag 0, data 0, U0);(tag 1, data 1, U1), Ui = 0 or 1(binary)

Implementation of LRU in the Set Associative Mapping with set size = 2

Modifications

 Initially all U0 = U1 = 1
 When Hit to (tag 0, data 0, U0), U1 <- 1(least recently used)
 (When Hit to (tag 1, data 1, U1), U0 <- 1(least recently used))
 When Miss, find the least recently used one(Ui=1)
 If U0 = 1, and U1 = 0, then replace (tag 0, data 0)
 M[tag 0, INDEX] <- Cache[INDEX](data 0)
 Cache[INDEX](tag 0, data 0, U0) <- (TAG,M[TAG,INDEX], 0); U1 <- 1
 If U0 = 0, and U1 = 1, then replace (tag 1, data 1)
 Similar to above; U0 <- 1
 If U0 = U1 = 0, this condition does not exist
 If U0 = U1 = 1, Both of them are candidates,
 Take arbitrary selection

Cache Memory

Write Through

 When writing into memory

 If Hit, both Cache and memory is written in parallel
 If Miss, Memory is written
 For a read miss, missing block may be
 overloaded onto a cache block

 Memory is always updated
 -> Important when CPU and DMA I/O are both executing

 Slow, due to the memory access time

Write-Back (Copy-Back)

 When writing into memory

 If Hit, only Cache is written
 If Miss, missing block is brought to Cache and write into Cache
 For a read miss, candidate block must be
 written back to the memory

 Memory is not up-to-date, i.e., the same item in
 Cache and memory may have different value

Cache Memory

