

 Program controlled data transfer
 Input-output instructions
 Program-controlled input/output
 Interrupt initiated input/output
 Flowchart for interrupt cycle
 Register transfer operations in interrupt

cycle

loop: If FGI = 1 goto loop

 INPR  new data, FGI  1

loop: If FGO = 1 goto loop

 consume OUTR, FGO  1

-- CPU -- -- I/O Device --

/* Input */ /* Initially FGI = 0 */
 loop: If FGI = 0 goto loop
 AC  INPR, FGI  0

/* Output */ /* Initially FGO = 1 */
 loop: If FGO = 0 goto loop
 OUTR  AC, FGO  0

I/O and Interrupt

Start Input

FGI  0

FGI=0

AC  INPR

More
Character

END

Start Output

FGO  0

FGO=0

More
Character

END

OUTR  AC

AC  Data

yes

no

yes

no

FGI=0 FGO=1

yes

yes
no

no

D7IT3 = p
IR(i) = Bi, i = 6, …, 11

 p: SC  0 Clear SC
INP pB11: AC(0-7)  INPR, FGI  0 Input char. to AC
OUT pB10: OUTR  AC(0-7), FGO  0 Output char. from AC
SKI pB9: if(FGI = 1) then (PC  PC + 1) Skip on input flag
SKO pB8: if(FGO = 1) then (PC  PC + 1) Skip on output flag
ION pB7: IEN  1 Interrupt enable on
IOF pB6: IEN  0 Interrupt enable off

• Program-controlled I/O
- Continuous CPU involvement
 I/O takes valuable CPU time
- CPU slowed down to I/O speed
- Simple
- Least hardware

I/O and Interrupt

Input

 LOOP, SKI DEV
 BUN LOOP
 INP DEV

Output

 LOOP, LDA DATA
 LOP, SKO DEV
 BUN LOP
 OUT DEV

-

Open communication only when some data has to be passed --> interrupt.

- The I/O interface, instead of the CPU, monitors the I/O device.

- When the interface founds that the I/O device is ready for data transfer,
 it generates an interrupt request to the CPU

- Upon detecting an interrupt, the CPU stops momentarily the task
 it is doing, branches to the service routine to process the data
 transfer, and then returns to the task it was performing.
 *

 IEN (Interrupt-enable flip-flop)

- can be set and cleared by instructions

- when cleared, the computer cannot be interrupted

R = Interrupt f/f

- The interrupt cycle is a HW implementation of a branch
 and save return address operation.
- At the beginning of the next instruction cycle, the
 instruction that is read from memory is in address 1.
- At memory address 1, the programmer must store a branch instruction
 that sends the control to an interrupt service routine
- The instruction that returns the control to the original
 program is "indirect BUN 0"

I/O and Interrupt

Store return address

R
=1 =0

in location 0
 M[0]  PC

Branch to location 1
 PC  1

IEN  0
 R  0

Interrupt cycle Instruction cycle

Fetch and decode
 instructions

IEN

FGI

FGO

Execute
 instructions

R  1

=1

=1

=1

=0

=0

=0

Register Transfer Statements for Interrupt Cycle
 - R F/F  1 if IEN (FGI + FGO)T0T1T2
  T0T1T2 (IEN)(FGI + FGO): R  1

- The fetch and decode phases of the instruction cycle
 must be modified Replace T0, T1, T2 with R'T0, R'T1, R'T2
- The interrupt cycle :

 RT0: AR  0, TR  PC

 RT1: M[AR]  TR, PC  0

 RT2: PC  PC + 1, IEN  0, R  0, SC  0

 After interrupt cycle

0 BUN 1120
0
1

PC = 256
255

1 BUN 0

 Before interrupt

Main
 Program

1120
I/O
 Program

0 BUN 1120
0

PC = 1

 256
255

1 BUN 0

Memory

Main
 Program

1120
I/O
 Program

256

I/O and Interrupt

