CAO: Lecture 19 Fetch-Decode-Execute cycle (typically 3 to 5 stage)

Topics Covered

- INSTRUCTION CYCLE
- FETCH and DECODE
- REGISTER REFERENCE INSTRUCTIONS
- MEMORY REFERENCE INSTRUCTIONS
- FLOWCHART FOR MEMORY REFERENCE INSTRUCTIONS
- INPUT-OUTPUT AND INTERRUPT

INSTRUCTION CYCLE

- In Basic Computer, a machine instruction is executed in the following cycle:
 - 1. Fetch an instruction from memory
 - 2. Decode the instruction
 - 3. Read the effective address from memory if the instruction has an indirect address
 - 4. Execute the instruction
- After an instruction is executed, the cycle starts again at step 1, for the next instruction
- *Note*: Every different processor has its own (different) instruction cycle

FETCH and DECODE

DETERMINE THE TYPE OF INSTRUCTION

D'7I'T3: Nothing

D'7IT3:

D7I'T3: Execute a register-reference instr.

D7IT3: Execute an input-output instr.

REGISTER REFERENCE INSTRUCTIONS

Register Reference Instructions are identified when

- $D_7 = 1$, I = 0

- Register Ref. Instr. is specified in b₀ ~ b₁₁ of IR
 Execution starts with timing signal T₃

 $r = D_7 I'T_3 => Register Reference Instruction$ $B_i = IR(i)$, i=0,1,2,...,11

	r:	$SC \leftarrow 0$
CLA	rB ₁₁:	$AC \leftarrow 0$
CLE	rB ₁₀ :	E ← 0
CMA	rB ₉ :	$AC \leftarrow AC'$
CME	rB ₈ :	E ← E'
CIR	rB ₇ :	$AC \leftarrow shr AC, AC(15) \leftarrow E, E \leftarrow AC(0)$
CIL	rB_6 :	$AC \leftarrow shl AC, AC(0) \leftarrow E, E \leftarrow AC(15)$
INC	rB ₅ :	$AC \leftarrow AC + 1$
SPA	rB₄:	if (AC(15) = 0) then (PC ← PC+1)
SNA	rB_3 :	if $(AC(15) = 1)$ then $(PC \leftarrow PC+1)$
SZA	rB_2 :	if (AC = 0) then (PC \leftarrow PC+1)
SZE	rB₁:	if (E = 0) then (PC \leftarrow PC+1)
HLT	rB ₀ :	$S \leftarrow 0$ (S is a start-stop flip-flop)

MEMORY REFERENCE INSTRUCTIONS

Symbol	Operation Decoder	Symbolic Description
AND	D ₀	$AC \leftarrow AC \land M[AR]$
ADD	$\mathbf{D}_{1}^{\mathbf{v}}$	$AC \leftarrow AC + M[AR], E \leftarrow C_{out}$
LDA	D_2^{\prime}	$AC \leftarrow M[AR]$
STA	$\overline{D_3}$	$M[AR] \leftarrow AC$
BUN	D₄	PĊ ← AR
BSA	D_5	$M[AR] \leftarrow PC, PC \leftarrow AR + 1$
ISZ	\mathbf{D}_{6}°	$M[AR] \leftarrow M[AR] + 1$, if $M[AR] + 1 = 0$ then $PC \leftarrow PC+1$

- The effective address of the instruction is in AR and was placed there during timing signal T_2 when I = 0, or during timing signal T_3 when I = 1
- Memory cycle is assumed to be short enough to complete in a CPU cycle
- The execution of MR instruction starts with T₄

AND to AC

D_0T_4 :	$DR \leftarrow M[AR]$	Read operand
D_0T_5 :	$AC \leftarrow AC \land DR, SC \leftarrow 0$	AND with AC
ADD to AC		
D ₁ T ₄ :	$DR \leftarrow M[AR]$	Read operand
D₁T₅:	$AC \leftarrow AC + DR, E \leftarrow C_{out}, SC \leftarrow 0$	Add to AC and store carry in E

MEMORY REFERENCE INSTRUCTIONS

LDA: Load to AC D_2T_4 : DR \leftarrow M[AR] D_2T_5 : AC \leftarrow DR, SC \leftarrow 0 STA: Store AC D_3T_4 : M[AR] \leftarrow AC, SC \leftarrow 0 BUN: Branch Unconditionally D_4T_4 : PC \leftarrow AR, SC \leftarrow 0 BSA: Branch and Save Return Address M[AR] \leftarrow PC, PC \leftarrow AR + 1

Memory, PC, AR at time T4

MEMORY REFERENCE

BSA:

- **ISZ: Increment and Skip-if-Zero**
 - D_6T_4 : DR \leftarrow M[AR]
 - D_6T_5 : DR \leftarrow DR + 1
 - D_6T_4 : M[AR] \leftarrow DR, if (DR = 0) then (PC \leftarrow PC + 1), SC \leftarrow 0

FLOWCHART FOR MEMORY REFERENCE INSTRUCTIONS

INPUT-OUTPUT AND INTERRUPT

A Terminal with a keyboard and a Printer

Input-Output Configuration

- The terminal sends and receives serial information
- The serial info. from the keyboard is shifted into INPR
- The serial info. for the printer is stored in the OUTR
- INPR and OUTR communicate with the terminal serially and with the AC in parallel.
- The flags are needed to synchronize the timing difference between I/O device and the computer