

 (Central Processing Unit) CPU Introduction
 CPU Organization Accumulator based CPU
 CPU Organization Register based CPU
 CPU
 CPU General Register Organization
 Stack organisation

 The CPU is made up of 3 major Components.
 The CPU performs a variety of functions dictated by the

type of instructions that are incorporated in the computer
 In programming, memory locations are needed for

storing pointers, counters, return addresses, temporary
result , etc. Memory access is most time consuming
operation in a computer.

 It is then more convenient and more efficient to store
these intermediate values in processor registers, which
are connected through common bus system.

Control

Register set

ALU

 The design of a CPU is a task that involves choosing

the hardware for implementing the machine

instructions.

 Lets describe how the registers communicate with

the ALU through buses and explain the operation of

the memory stack.

R2

R4

R1

R3

R5
R6
R7

Clock

3X8
decoder

MUX MUX

Arithmetic logic unit
ALU

Load
(7 lines)

SELA

B bus

Output

SELD

OPR

SELB

A bus

Input

SELA SELB SELD OPR

Control word
3 3 3 5

 To Perform this operation, the control must provide binary selection
variables to the following selector inputs:

 1. MUX A selector (SELA): to place the content of R2 into bus A.
 2. MUX B selector (SELB): to place the content of R3 into bus B.
 3. ALU operation selector (OPR): to provide the arithmetic addition

A+B.
Decoder destination selector (SELD): to transfer the content of the
output bus into R1.
There are therefore 14 binary selection inputs , and their combination
value specifies a control word)See Tables 8-1, 8-2 & 8-3 (Morris
Mano))
A control Word (CW) is a word whose individual bits represent a
various control signals.

 A complete CPU :

 A powerful CPU can be designed using a structure with an
instruction unit that fetch instructions from an instruction cache or
from the main memory if the desired instructions are not in the
cache.

 It has also separate processing units to deal with integer data and
floating point data.

 A data cache is inserted between these units and the main memory.
 Other processor use a single cache (data and instruction) that store

both instructions and data.

 The stack in digital computers is essentially a memory unit with
an address register (Stack Pointer SP) that count only after an
initial value is loaded into the stack.

 SP value always point at the top item in the stack.
 The 2 operations of stacks are the insertion (push), and

deletion (pop) of items.
 A stack can be organized as a collection of a finite number of

memory words or registers.
 In a 64-word stack, SP contains 6 bits because 26 = 64.
 The 1-bit register FULL is set to 1 when stack is full.
 The 1-bit register EMTY is set to 1 when stack is empty.
 DR is data register that holds the binary data to be written into

or read out of the stack.

B

A

C

DR

SP

FULL

EMPTY

Address

0

1

2

3
4

63

Block diagram of
a 64 word-register stack

6 bit SP

Data
(operands)

Stack

DR

Computer memory with
program, data & stack segments

Program
(instructions)

Mem. Unit
Address

SP

PC

AR

4001
4000
3999
3998
3997

3000

2000

1000

Hold data to
 be w/R i/o

of stack

 The push operation is implemented with the following
sequence of microoperations:

 SP SP+1 Increment stack pointer
 M[SP] DR Write item on top of the stack
 If (SP=0) then (FULL 1) Check if stack is full
(when 63 is incremented by 1, the result is 0.)
 EMPTY 0 Mark the stack not empty

 The pop operation consists the following sequence of
microoperations:

 DR M[SP] Read item from top of the stack
 SP SP-1 Decrement stack pointer
 If (SP=0) then (EMPTY 1) Check if stack is empty
 FULL 0 Mark the stack not full

A stack can exist as a stand-alone unit or can be implemented in

a RAM attached to a CPU.

 A stack can be implemented in a portion of a random –access memory
attached to a CPU, and using a processor register as SP as shown the
diagram above.

 In the diagram shown Computer memory with program, data & stack
segments:

 PC (points at the address of the next instruction) is used during the
fetch phase to read an instruction.

 AR (points at an array of data) is used during the execution phase to
read an operand.

 SP is used push or pop items into or from the stack
 The three registers are connected to a common address bus, & either

one can provide an address for memory.
 Push: insert (write) new item at the top of the stack
 SP ← SP – 1, M[SP] ← DR
 Pop: delete (read) the top item from the stack
 DR ← M[SP], SP ← SP + 1

 The stack limits (overflow) can be checked by using 2
processor registers:

 One to hold the upper limit (3000 in this example)
 Another to hold the lower limit (4001 in this example)

SP is compared with the upper limit register after each push
operation,
 SP is compared with the lower limit register after each pop
operation.
How many microoperations are needed then for the pop or push
operations?
2 microoperations are needed for push or pop :

 1. An access to memory through SP
 2. Updating SP

 A stack organization is very effective for evaluating arithmetic
expressions.

 The reverse Polish notation is in a form suitable for stack
manipulation, where the infix expression A*B+C*D

 can be written in Reverse Polish Notation (RPN or postfix notation)
as: AB*CD*+
Example: Stack operation to evaluate 3*4+5*6

 => 34*56*+ (in in reverse Polish notation)

3

3

3
4

4

12

*

12
5

5

12

6
5

6

12
30

*

42

+

 The bits of the instruction are divided into groups called
fields.

 The most common fields founded in the instruction formats
are:

 1. An operation code field
 2. An address field.
 3. A mode field (Addressing modes, Sec. 8.5)
 Data executed by instructions (operands) are stored either in

memory or in processor registers.
 Operands residing in memory are specified by their memory

address.
 Operands residing in registers are specified with a register

address.

 A register address is binary number of k bits that defines one
of 2^k registers in the CPU.

 Most computers fall into one of the 3 types of CPU
organizations:

 1. Single Accumulator (AC) Organization, i.e. ADD X
 2. General register (Rs) Organization, ADD R1,R2,R3
 3. Stack Organization, i.e. ADD (pop and add 2 operand then

push the result into the stack)
 Some computers combine features from more than one

organization structure, Ex. Intel 8080 (GRs for register
transfer, AC used in arithmetic operations)

