CAO: Lecture 15 Addressing modes

Topics Covered

- Central Processing Unit Addressing modes
- Numerical example
- Immediate Mode
- Indirect Mode
- Indexing Mode
- Relative Mode

- The addressing mode specifies a rule for interpreting or modifying the address field of the instruction before the operand is actually executed.
- Computers use addressing mode techniques for the purpose of accommodating one of the following provisions:
 - 1. To give programming versatilities to the user to be more flexible.
 - 2. To reduce the number of bits in the addressing field of the instruction.
- In some some computers, the addressing mode of the instruction is specified with distinct binary code.

Instruction format with mode field

Opcode Mode	Address
-------------	---------

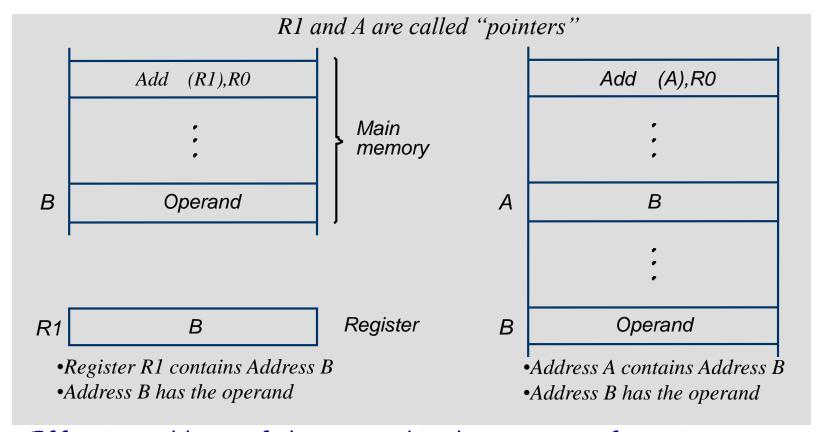
- Other computers use a single binary for operation & Address mode.
- The mode field is used to locate the operand.
- Address field may designate a memory address or a processor register.
- There are 2 modes that need no address field at all (Implied & immediate modes).

The most well known addressing mode then are:

- > Implied mode.
- Immediate mode
- Register mode
- Register Indirect mode
- Auto-increment or Auto-decrement mode
- Direct Mode
- Indirect Mode
- Relative Address Mode
- Index Addressing Mode

Central Processing Unit Addressing modes Numerical Example

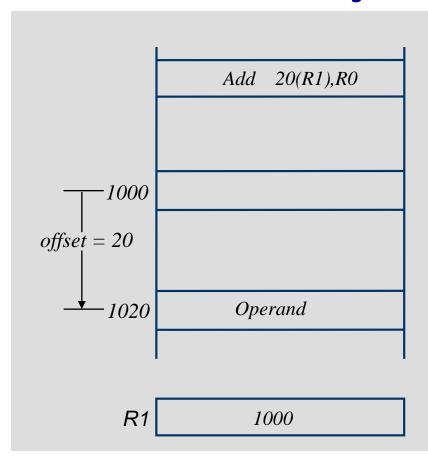
PC=200		R1=400	Address	Memory
XR=100		AC	200	Load to AC Mode
			201	Address=500
			202	Next Instruction
Addressing mode	eff. Add	Content of AC		
D:	F00	000	399	450
Direct Address	500	800	400	700
Immediate operand	201	500		
Indirect Address	800	300	500	800
Relative Address	702 (PC=PC+2) 325			
Indexes Address	600 (XR+500) 900		600	900
Register		400	702	325
Register Indirect	400	700	702	323
Auto-increment	400	700	800	300
Auto-decrement	399	450		


Tabular list

- Different ways in which the address of an operand in specified in an instruction is referred to as <u>addressing modes</u>.
- Register mode
 - Operand is the contents of a processor register.
 - Address of the register is given in the instruction.
 - E.g. Clear R1
- Absolute mode
 - Operand is in a memory location.
 - Address of the memory location is given explicitly in the instruction.
 - E.g. Clear A
 - Also called as "Direct mode" in some assembly languages
- Register and absolute modes can be used to represent variables

Central Processing Unit Addressing modes Immediate mode

- Operand is given explicitly in the instruction.
- E.g. Move #200, R0
- Can be used to represent constants.
- Register, Absolute and Immediate modes contained either the address of the operand or the operand itself.
- Some instructions provide information from which the memory address of the operand can be determined
 - That is, they provide the <u>"Effective Address"</u> of the operand.
 - They do not provide the operand or the address of the operand explicitly.
- Different ways in which "Effective Address" of the operand can be generated.


Central Processing Unit Addressing modes Indirect Mode

Effective Address of the operand is the contents of a register or a memory location whose address appears in the instruction.

Central Processing Unit Addressing modes Indexing Mode

Effective Address of the operand is generated by adding a constant value to the contents of the register

- •Operand is at address 1020
- •Register R1 contains 1000
- •Offset 20 is added to the contents of R1 to generate the address 20
- •Contents of R1 do not change in the process of generating the address
- •R1 is called as an "index register"

What address would be generated by Add 1000(R1), R0 if R1 had 20?

Central Processing Unit Addressing modes Relative mode

- •Effective Address of the operand is generated by adding a constant value to the contents of the Program Counter (PC).
- Variation of the Indexing Mode, where the index register is the PC
- instead of a general purpose register.
- ·When the instruction is being executed, the PC holds the address of the next instruction in the program.
- ·Useful for specifying target addresses in branch instructions.

Addressed location is "relative" to the PC, this is called "Relative Mode"

Autoincrement mode:

- Effective address of the operand is the contents of a register specified in the instruction.
- After accessing the operand, the contents of this register are <u>automatically</u> <u>incremented</u> to point to the <u>next consecutive memory location</u>.
- (*R1*)+

Autodecrement mode

- Effective address of the operand is the contents of a register specified in the instruction.
- Before accessing the operand, the contents of this register are <u>automatically</u> <u>decremented</u> to point to the <u>previous consecutive</u> <u>memory location</u>.
- **-** (*R1*)
- Autoincrement and Autodecrement modes are useful for implementing "Last-In-First-Out" data structures