

 What is RISC?
 OVERLAPPED REGISTER WINDOWS
 CISC versus RISC

What is RISC?

• RISC?
RISC, or Reduced Instruction Set Computer. is a type of microprocessor
architecture that utilizes a small, highly-optimized set of instructions, rather than
a more specialized set of instructions often found in other types of architectures.

• History
The first RISC projects came from IBM, Stanford, and UC-Berkeley in the late 70s
and early 80s. The IBM 801, Stanford MIPS, and Berkeley RISC 1 and 2 were all
designed with a similar philosophy which has become known as RISC. Certain
design features have been characteristic of most RISC processors:
– one cycle execution time: RISC processors have a CPI (clock per instruction) of one cycle.

This is due to the optimization of each instruction on the CPU and a technique called
PIPELINING

– pipelining: a techique that allows for simultaneous execution of parts, or stages, of
instructions to more efficiently process instructions;

– large number of registers: the RISC design philosophy generally incorporates a larger
number of registers to prevent in large amounts of interactions with memory

lMajor characteristics of a RISC architecture

»1) Relatively few instructions

»2) Relatively few addressing modes

»3) Memory access limited to load and store instruction

»4) All operations done within the registers of the CPU

»5) Fixed-length, easily decoded instruction format

»6) Single-cycle instruction execution

»7) Hardwired rather than microprogrammed control

Reduced Instruction Set Computer (RISC)

– RISC Instruction

• Only use LOAD and STORE instruction when communicating between memory and CPU

• All other instructions are executed within the registers of the CPU without referring to memory

Program to evaluate X = (A + B) * (C + D)

LOAD R1, A

LOAD R2, B

LOAD R3, C

LOAD R4, D

ADD R1, R1, R2

ADD R3, R3, R4

MUL R1, R1, R3

STORE X, R1
1][

311

433

211

][4

][3

][2

][1

RXM

RRR

RRR

RRR

DMR

CMR

BMR

AMR

•Load instruction transfers the operand from memory to CPU Register.

•Add and Multiply operations are executed with data in the registers without accessing the
memory.

•Result is then stored in the memory with store information.

• Other characteristics of a RISC architecture

– 1) A relatively large number of registers in the processor unit

– 2) Use of overlapped register windows to speed-up procedure
call and return

– 3) Efficient instruction pipeline

– 4) Compiler support for efficient translation of high-level
language programs into machine language programs

OVERLAPPED REGISTER WINDOWS

• There are three classes of registers:

– Global Registers

• Available to all functions

– Window local registers

• Variables local to the function

– Window shared registers

• Permit data to be shared without actually needing to copy it

• Only one register window is active at a time

– The active register window is indicated by a pointer

• When a function is called, a new register window is activated

– This is done by incrementing the pointer

• When a function calls a new function, the high numbered registers of the
calling function window are shared with the called function as the low
numbered registers in its register window

• This way the caller’s high and the called function’s low registers overlap
and can be used to pass parameters and results

R15

R10
R73

R64

R63

R58
R57

R48

R47

R42
R41

R32

R31

R26

R15

R10

R25

R16

Common to D and A

Local to D

Common to C and D

Local to C

Common to B and C

Local to B

Common to A and B

Local to A

Common to A and D

R9

R0

Common to all
Procedures

Global
registers

Proc A

Proc B

Proc C

Proc D

Circular Window

10 Local registers
 +

2 sets of 6 registers
(common to adjacent

windows)

•Total 74 registers : R0 - R73

–R0 - R9 : Global
registers

–R10 - R63 : 4 windows

»Window A

»Window B

»Window C

»Window D

• Example) Procedure A calls procedure B

– R26 - R31

» Store parameters for procedure B

» Store results of procedure B

– R16 - R25 : Local to procedure A

– R32 - R41 : Local to procedure B

• Window Size = L + 2C + G = 10 + (2 X 6) + 10 = 32 registers

• Register File (total register) = (L + C) X W + G = (10 + 6) X 4 + 10 = 74 registers

– 여기서, G : Global registers = 10

 L : Local registers = 10

 C : Common registers = 6

 W : Number of windows = 4

– Berkeley RISC I

• RISC Architecture 의 기원 : 1980 년대 초

– Berkeley RISC project : first project = Berkeley RISC I

– Stanford MIPS project

• Berkeley RISC I

– 32 bit CPU, 32 bit instruction format, 31 instruction

– 3 addressing modes : register, immediate, relative to PC

 Instruction Set : Tab. 8-12

 Instruction Format : Fig. 8-10

 Register Mode : bit 13 = 0
» S2 = register

» Example) ADD R22, R21, R23

 ADD Rs, S2, Rd : Rd = Rs + S2

 Register Immediate Mode : bit 13 = 1
» S2 = sign extended 13 bit constant

» Example) LDL (R22)#150, R5

 LDL (Rs)S2, Rd : Rd = M[R22] + 150

 PC Relative Mode
» Y = 19 bit relative address

» Example) JMPR COND, Y

 Jump to PC = PC + Y

» CWP (Current Window Pointer)
 CALL, RET?stack pointer ?????

 RISC Architecture Originator

Opcode Rd Rs 0 Not used S2

8

31

58155

04512131418192324

(a) Register mode : (S2 specifies a register)

Opcode Rd Rs 1 S2

8

31

13155

012131418192324

(b) Register-immediate mode : (S2 specifies an operand)

Opcode COND Y

8

31

195

018192324

(c) PC relative mode :

Architecture Originator Licensees

Alpha DEC Mitsubishi, Samsung

MIPS MIPS Technologies NEC, Toshiba

PA-RISC Hewlett Packard Hitachi, Samsung

PowerPC Apple, IBM, Motorola Bull G ro u p

Sparc Sun Fujitsu, Hyundai

i960 Intel Intel only (Embedded Controller)

CISC versus RISC

CISC RISC

Emphasis on hardware Emphasis on software

Includes multi-clock
complex instructions

Single-clock,
reduced instruction only

Memory-to-memory:
"LOAD" and "STORE"

incorporated in instructions

Register to register:
"LOAD" and "STORE"

are independent instructions

Small code sizes,
high cycles per second

Low cycles per second,
large code sizes

Transistors used for storing
complex instructions

Spends more transistors
on memory registers

