CAO: Lecture 5 Combinational Logic Blocks: Examples

Topics Covered

- Examples of Combinational circuits
- Decoder
- 2:4 Decoder
- 3:8 Decoder
- Combinational Circuit Design with Decoders
- Multiplexers

Examples of Combinational Circuits

a) Decoders
b) Encoders
c) Multiplexers
d) Demultiplexers

Decoder

- Accepts a value and decodes it
- Output corresponds to value of n inputs
- Consists of:
- Inputs (n)
- Outputs (2^{n}, numbered from o $\rightarrow 2^{n}-1$)
- Selectors / Enable (active high or active low)

The truth table of 2-to-4 Decoder

$$
\begin{array}{ccc|cccc}
S_{1} & S_{0} & E & 0_{0} & 0_{1} & 0_{2} & 0_{3} \\
\hline \mathrm{X} & \mathrm{X} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}
$$

2-to-4 Decoder

S_{1}	S_{0}	E	0_{0}	0_{1}	O_{2}	O_{3}
X	X	0	0	0	0	0
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	1

(b)

2-to-4 Decoder

The truth table of 3-to-8 Decoder

A2	A1	A0	D0	D1	D2	D3	D4	D5	D6	D7
0	0	0	1							
0	0	1		1						
0	1	0			1					
0	1	1				1				
1	0	0					1			
1	0	1						1		
1	1	0							1	
1	1	1								1

3-to-8 Decoder

3-to-8 Decoder with Enable

2-to-4 Decoder: NAND implementation

Decoder is enabled when $\mathrm{E}=\mathrm{o}$ and an output is active if it is o

(a) Logic diagram

E	A	B	D_{0}	D_{1}	D_{2}	D_{3}
1	\boldsymbol{X}	\boldsymbol{X}	1	1	1	1
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	0

(b) Truth table

2-4 Decoder with 2-input and Enable

Four outputs

Decoder Expansion

- Decoder expansion
- Combine two or more small decoders with enable inputs to form a larger decoder
- 3-to-8-line decoder constructed from two 2-to-4line decoders
- The MSB is connected to the enable inputs
- if $A_{2}=0$, upper is enabled; if $A_{2}=1$, lower is enabled.

Decoder Expansion

Combining two 2-4 decoders to form one 3-8 decoder using enable switch

A_{2}	A_{1}	A_{0}	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
0	,	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	(1)	1	0	0	0	,	()
1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

The highest bit is used for the enable

Combinational Circuit Design with Decoders

- Combinational circuit implementation with decoders
- A decoder provide 2^{n} minterms of n input variables
- Since any Boolean function can be expressed as a sum of minterms, one can use a decoder and external OR gates to implement any combinational function.

Combinational Circuit Design with Decoders

Example Realize $\mathrm{F}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\Sigma(1,4,7)$ with a decoder:

Multiplexers

Select an input value with one or more select bits

- Use for transmitting data
- Allows for conditional transfer of data
- Sometimes called a mux
- EXAMPLE- 2:1 LINE MUX

(a) Logic diagram
(b) Block diagram

4-to-1- Line Multiplexer

Function table

Quadruple 2-to-1-Line Multiplexer

Multiplexer as combinational modules

- Connect input variables to select inputs of multiplexer (n-1 for n variables)
- Set data inputs to multiplexer equal to values of function for corresponding assignment of select variables
- Using a variable at data inputs reduces size of the multiplexer

(a) Truth table
(b) Multiplexer implementation

Implementing a Four- Input Function with a Multiplexer

A	B	C	D	F	
0	0	0	0	0	$\mathrm{~F}=\mathrm{D}$
0	0	0	1	1	
0	0	1	0	0	$\mathrm{~F}=\mathrm{D}$
0	0	1	1	1	
0	1	0	0	1	$\mathrm{~F}=\overline{\mathrm{D}}$
0	1	0	1	0	
0	1	1	0	0	$\mathrm{~F}=0$
0	1	1	1	0	
1	0	0	0	0	$\mathrm{~F}=0$
1	0	0	1	0	
1	0	1	0	0	$\mathrm{~F}=\mathrm{D}$
1	0	1	1	1	
1	1	0	0	1	$\mathrm{~F}=1$
1	1	0	1	1	
1	1	1	0	1	$\mathrm{~F}=1$
1	1	1	1	1	

