CAO: Lecture 1 Boolean Algebra Introduction

Topics Covered

- Boolean Algebra
- Axioms
- Terminology
- N-bit boolean algebra
- Named theorems

Boolean Algebra

- We observed in our introduction that early in the development of computer hardware, a decision was made to use binary circuits because it greatly simplified the electronic circuit design.
- In order to work with binary circuits, it is helpful to have a conceptual framework to manipulate the circuits algebraically, building only the final "most simple" result.
- George Boole (1813-1864) developed a mathematical structure to deal with binary operations with just two values. Today, we call these structures *Boolean Algebras*.

Boolean Algebra Defined

- A Boolean Algebra B is defined as a 5-tuple $\{B, +, *, ', 0, 1\}$
- + and * are *binary* operators,' is a *unary* operator.
- The following axioms must hold for any elements $a, b, c \in \{0,1\}$
- Axiom #1: Closure
- If a and b are elements of B, (a + b) and (a * b) are in B.
- Axiom #2: Cardinality
- There are at least two elements a and b in B such that a != b.
- Axiom #3: Commutative
- If a and b are elements of B

(a + b) = (b + a), and (a * b) = (b * a)

Axioms

Axiom #4: Associative If a and b are elements of B (a + b) + c = a + (b + c), and (a * b) * c = a * (b * c)

Axiom #5: Identity Element B has identity elements with respect to + and * o is the identity element for +, and 1 is the identity element for * a + o = a and a * 1 = a

Axiom #6: Distributive

* is distributive over + and + is distributive over * a * (b + c) = (a * b) + (a * c), and a + (b * c) = (a + b) * (a + c)

Axiom #7: Complement Element

For every a in B there is an element a' in B such that a + a' = 1, and a * a' = 0

Terminology

- Element 0 is called "FALSE".
- Element 1 is called "TRUE".
- '+' operation "OR", '*' operation "AND" and ' operation "NOT".
- Juxtaposition implies * operation: *ab* = *a* * *b*
- Operator order of precedence is: (), ', *, +.
 a+bc = *a*+(*b*c*) ≠ (*a+b*)**c ab* ' = *a*(*b* ') ≠ (*a*b*) '
- Single Bit Boolean Algebra(1' = 0 and 0' = 1)

+	0	1	*	0	1
	0		0	0	0
1	1	1	1	0	1

Proof by Truth Table

- Consider the distributive theorem: a + (b * c) = (a + b)*(a + c).
 Is it true for a two bit Boolean Algebra?
- Can prove using a truth table. How many possible combinations of *a*, *b*, and *c* are there?
- Three variables, each with two values: $2*2*2 = 2^3 = 8$

а	b	С	b*c	a+(b*c)	a+b	a+c	(a+b)*(a+c)
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1 3	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

n-bit Boolean Algebra

- Single bit Boolean Algebra can be extended to *n-bit* Boolean Algebra by define *sum(+)*, *product(*)* and *complement(*[•]) as bitwise operations
- Let a = 1101010, b = 1011011
- a + b = 1101010 + 1011011 = 1111011
- a * b = 1101010 * 1011011 = 1001010
- a' = 1101010' = 0010101

Principle of Duality

The dual of a statement S is obtained by interchanging * and +; o and 1. Dual of (a*1)*(o+a') = o is (a+o)+(1*a') = 1 Dual of any theorem in a Boolean Algebra is also a theorem. This is called the *Principle of Duality*.

Named Theorems

All of the following theorems can be proven based on the axioms. They are used so often that they have names.

Idempotent	a + a = a	a * a = a
Boundedness	<i>a</i> + <i>1</i> = <i>1</i>	a * 0 = 0
Absorption	$a + (a^*b) = a$	$a^*(a+b) = a$
Associative	(a+b)+c=a+(b+c)	(a*b)*c=a*(b*c)

The theorems can be proven for a two-bit Boolean Algebra using a truth table, but you must use the axioms to prove it in general for all Boolean Algebras.

More Named Theorems

Involution	(a')' = a	
DeMorgan's	(a+b)'=a'*b'	(a*b)'=a'+b'

DeMorgan's Laws are particularly important in circuit design. It says that you can get rid of a complemented output by complementing all the inputs and changing ANDs to ORs. (More about circuits coming up...)

Proof using Theorems

Use the properties of Boolean Algebra to reduce (x + y)(x + x) to x. Warning, make sure you use the laws precisely.

(x+y)(x+x)	Given
(x + y)x	Idempotent
<i>x(x</i> + <i>y)</i>	Commutative
X	Absorption

Unlike truth tables, proofs using Theorems are valid for any boolean algebra, but just bits.

Sources

- Lipschutz, Discrete Mathematics
- Mowle, A Systematic Approach to Digital Logic Design