

 Boolean Algebra
 Axioms
 Terminology
 N-bit boolean algebra
 Named theorems

 We observed in our introduction that early in the development

of computer hardware, a decision was made to use binary

circuits because it greatly simplified the electronic circuit

design.

 In order to work with binary circuits, it is helpful to have a

conceptual framework to manipulate the circuits algebraically,

building only the final “most simple” result.

 George Boole (1813-1864) developed a mathematical structure

to deal with binary operations with just two values. Today, we

call these structures Boolean Algebras.

• A Boolean Algebra B is defined as a 5-tuple {B, +, *, ’, 0, 1}

• + and * are binary operators,’ is a unary operator.

• The following axioms must hold for any elements a, b, c {0,1}

• Axiom #1: Closure
• If a and b are elements of B, (a + b) and (a * b) are in B.

• Axiom #2: Cardinality
• There are at least two elements a and b in B such that a != b.

• Axiom #3: Commutative
• If a and b are elements of B

(a + b) = (b + a), and (a * b) = (b * a)

Axiom #4: Associative
If a and b are elements of B
(a + b) + c = a + (b + c), and (a * b) * c = a * (b * c)

Axiom #5: Identity Element
B has identity elements with respect to + and *
0 is the identity element for +, and 1 is the identity element for *
a + 0 = a and a * 1 = a

Axiom #6: Distributive
 * is distributive over + and + is distributive over *
 a * (b + c) = (a * b) + (a * c), and a + (b * c) = (a + b) * (a + c)

Axiom #7: Complement Element

 For every a in B there is an element a' in B such that
 a + a' = 1, and a * a' = 0

 Element 0 is called “FALSE”.

 Element 1 is called “TRUE”.

 ‘+’ operation “OR”,‘*’ operation “AND” and ’ operation

“NOT”.

 Juxtaposition implies * operation: ab = a * b

 Operator order of precedence is: (), ’, *, +.
a+bc = a+(b*c) ≠ (a+b)*c

ab’ = a(b’) ≠ (a*b)’

 Single Bit Boolean Algebra(1’ = 0 and 0’ = 1)

+ 0 1

0 0 1

1 1 1

* 0 1

0 0 0

1 0 1

 Consider the distributive theorem: a + (b * c) = (a + b)*(a + c).
Is it true for a two bit Boolean Algebra?

 Can prove using a truth table. How many possible combinations
of a, b, and c are there?

 Three variables, each with two values: 2*2*2 = 23 = 8

a b c b*c a+(b*c) a+b a+c (a+b)*(a+c)

0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0

0 1 0 0 0 1 0 0

0 1 1 1 1 1 1 1

1 0 0 0 1 1 1 1

1 0 1 0 1 1 1 1

1 1 0 0 1 1 1 1

1 1 1 1 1 1 1 1

 Single bit Boolean Algebra can be extended to n-bit Boolean

Algebra by define sum(+), product(*) and complement(‘) as bit-

wise operations

 Let a = 1101010, b = 1011011

 a + b = 1101010 + 1011011 = 1111011

 a * b = 1101010 * 1011011 = 1001010

 a’ = 1101010’ = 0010101

Principle of Duality
 The dual of a statement S is obtained by interchanging * and +; 0 and 1.
 Dual of (a*1)*(0+a’) = 0 is (a+0)+(1*a’) = 1
 Dual of any theorem in a Boolean Algebra is also a theorem.
 This is called the Principle of Duality.

All of the following theorems can be proven based on the axioms.

They are used so often that they have names.

Idempotent a + a = a a * a = a

Boundedness a + 1 = 1 a * 0 = 0

Absorption a + (a*b) = a a*(a+b) = a

Associative (a+b)+c=a+(b+c) (a*b)*c=a*(b*c)

The theorems can be proven for a two-bit Boolean Algebra using a truth table, but you
must use the axioms to prove it in general for all Boolean Algebras.

Involution (a’)’ = a

DeMorgan’s (a+b)’ = a’ * b’ (a*b)’=a’ + b’

DeMorgan’s Laws are particularly important in circuit design. It says that you can get
rid of a complemented output by complementing all the inputs and changing ANDs to
ORs. (More about circuits coming up…)

• Use the properties of Boolean Algebra to reduce (x +
y)(x + x) to x. Warning, make sure you use the laws
precisely.

(x + y)(x + x) Given

(x + y)x Idempotent

x(x + y) Commutative

x Absorption

Unlike truth tables, proofs using Theorems are valid for any boolean algebra,
but just bits.

 Lipschutz, Discrete Mathematics
 Mowle, A Systematic Approach to Digital Logic

Design

