CAO: Lecture 1

Boolean Algebra
Introduction

Topics Covered

- Boolean Algebra
- Axioms
- Terminology
- N-bit boolean algebra
- Named theorems

Boolean Algebra

- We observed in our introduction that early in the development of computer hardware, a decision was made to use binary circuits because it greatly simplified the electronic circuit design.
- In order to work with binary circuits, it is helpful to have a conceptual framework to manipulate the circuits algebraically, building only the final "most simple" result.
- George Boole (1813-1864) developed a mathematical structure to deal with binary operations with just two values. Today, we call these structures Boolean Algebras.

Boolean Algebra Defined

- A Boolean Algebra B is defined as a 5-tuple $\left\{\mathrm{B},+,{ }^{*},{ }^{\prime}, 0,1\right\}$
+ and ${ }^{*}$ are binary operators,' is a unary operator.
The following axioms must hold for any elements $a, b, c \in\{0,1\}$

Axiom \#1: Closure
If a and b are elements of $\mathrm{B},(\mathrm{a}+\mathrm{b})$ and $(\mathrm{a} * \mathrm{~b})$ are in B . Axiom \#2: Cardinality

There are at least two elements a and b in B such that $\mathrm{a}!=\mathrm{b}$.
Axiom \#3: Commutative
If a and b are elements of B
$(a+b)=(b+a)$, and $(a * b)=(b * a)$

Axioms

Axiom \#4: Associative
If a and b are elements of B
$(a+b)+c=a+(b+c)$, and $(a * b) * c=a *(b * c)$
Axiom \#5: Identity Element
B has identity elements with respect to + and *
0 is the identity element for + , and 1 is the identity element for *
$\mathrm{a}+\mathrm{o}=\mathrm{a}$ and $\mathrm{a} * 1=\mathrm{a}$

Axiom \#6: Distributive

* is distributive over + and + is distributive over * $a *(b+c)=(a * b)+(a * c)$, and $a+(b * c)=(a+b) *(a+c)$

Axiom \#7: Complement Element
For every a in B there is an element a^{\prime} in B such that $a+a^{\prime}=1$, and $a * a^{\prime}=0$

Terminology

- Element 0 is called "FALSE".
- Element 1 is called "TRUE".
- '+' operation "OR", '*' operation "AND" and ' operation "NOT".
- Juxtaposition implies * operation: $a b=a * b$
- Operator order of precedence is: (), , , *, +.

$$
\begin{aligned}
& a+b c=a+\left(b^{*} c\right) \neq(a+b)^{*} c \\
& a b^{\prime}=a\left(b^{\prime}\right) \neq\left(a^{*} b\right)^{\prime}
\end{aligned}
$$

- Single Bit Boolean $\operatorname{Algebra}\left(1^{\prime}=0\right.$ and $\left.0^{\prime}=1\right)$

+	0	1
0	0	1
1	1	1

$*$	0	1
0	0	0
1	0	1

Proof by Truth Table

- Consider the distributive theorem: $a+\left(b^{*} c\right)=(a+b)^{*}(a+c)$. Is it true for a two bit Boolean Algebra?
- Can prove using a truth table. How many possible combinations of a, b, and c are there?
- Three variables, each with two values: $2 * 2 * 2=2^{3}=8$

a	b	c	$b^{*} c$	$a+\left(b b^{*} c\right)$	$a+b$	$a+c$	$(a+b) *(a+c)$
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

n-bit Boolean Algebra

- Single bit Boolean Algebra can be extended to n-bit Boolean Algebra by define sum(+), product(*) and complement(') as bitwise operations
- Let $\mathrm{a}=1101010, \mathrm{~b}=1011011$
- $a+b=1101010+1011011=1111011$
- $\mathrm{a} * \mathrm{~b}=1101010 * 1011011=1001010$
- $a^{\prime}=1101010{ }^{\prime}=0010101$

Principle of Duality

The dual of a statement S is obtained by interchanging * and $+; 0$ and 1 .
Dual of $\left(a *_{1}\right) *\left(0+a^{\prime}\right)=0$ is $(a+0)+\left(1 * a^{\prime}\right)=1$
Dual of any theorem in a Boolean Algebra is also a theorem.
This is called the Principle of Duality.

Named Theorems

All of the following theorems can be proven based on the axioms. They are used so often that they have names.

Idempotent	$a+a=a$	$a * a=a$
Boundedness	$a+1=1$	$a * 0=0$
Absorption	$a+\left(a^{*} b\right)=a$	$a^{*}(a+b)=a$
Associative	$(a+b)+c=a+(b+c)$	$\left(a^{*} b\right)^{*} c=a^{*}\left(b^{*} c\right)$

The theorems can be proven for a two-bit Boolean Algebra using a truth table, but you must use the axioms to prove it in general for all Boolean Algebras.

More Named Theorems

Involution	$\left(a^{\prime}\right)^{\prime}=a$	
DeMorgan's	$(a+b)^{\prime}=a^{\prime *} b^{\prime}$	$(a * b)^{\prime}=a^{\prime}+b^{\prime}$

DeMorgan's Laws are particularly important in circuit design. It says that you can get rid of a complemented output by complementing all the inputs and changing ANDs to ORs. (More about circuits coming up...)

Proof using Theorems

Use the properties of Boolean Algebra to reduce $(x+$ $y)(x+x)$ to x. Warning, make sure you use the laws precisely.

$(x+y)(x+x)$	Given
$(x+y) x$	Idempotent
$x(x+y)$	Commutative
x	Absorption

Unlike truth tables, proofs using Theorems are valid for any boolean algebra, but just bits.

Sources

Lipschutz, Discrete Mathematics Mowle, A Systematic Approach to Digital Logic Design

