
OBJECT ORIENTED
PROGRAMMING USING C++

 2000 Prentice Hall, Inc. All rights reserved.

Chapter 10 - Structures, Unions, Bit
Manipulations, and Enumerations

Outline
10.1 Introduction
10.2 Structure Definitions
10.3 Initializing Structures
10.4 Accessing Members of Structures
10.5 Using Structures with Functions
10.6 Typedef
10.7 Example: High-Performance Card Shuffling and

Dealing Simulation
10.8 Unions
10.9 Bitwise Operators
10.10 Bit Fields
10.11 Enumeration Constants

 2000 Prentice Hall, Inc. All rights reserved.

10.1 Introduction

• Structures
– Collections of related variables (aggregates) under one

name
• Can contain variables of different data types

– Commonly used to define records to be stored in files
– Combined with pointers, can create linked lists, stacks,

queues, and trees

 2000 Prentice Hall, Inc. All rights reserved.

10.2 Structure Definitions

• Example
struct card {

char *face;
char *suit;

};

– struct introduces the definition for structure card
– card is the structure name and is used to declare variables of the

structure type
– card contains two members of type char * - face and

suit

 2000 Prentice Hall, Inc. All rights reserved.

10.2 Structure Definitions (II)

• Struct information
– A struct cannot contain an instance of itself
– Can contain a member that is a pointer to the same structure type
– Structure definition does not reserve space in memory
– Creates a new data type that used to declare structure variables.

• Declarations
– Declared like other variables:

card oneCard, deck[52], *cPtr;

– Can use a comma separated list:
struct card {

char *face;
char *suit;

} oneCard, deck[52], *cPtr;

 2000 Prentice Hall, Inc. All rights reserved.

10.2 Structure Definitions (III)

• Valid Operations
– Assigning a structure to a structure of the same type
– Taking the address (&) of a structure
– Accessing the members of a structure
– Using the sizeof operator to determine the size of a structure

 2000 Prentice Hall, Inc. All rights reserved.

10.3 Initializing Structures

• Initializer lists
– Example:

card oneCard = { "Three", "Hearts" };

• Assignment statements
– Example:

card threeHearts = oneCard;
– Or:

card threeHearts;
threeHearts.face = “Three”;
threeHearts.suit = “Hearts”;

 2000 Prentice Hall, Inc. All rights reserved.

10.4 Accessing Members of Structures

• Accessing structure members
– Dot operator (.) - use with structure variable name

card myCard;
printf("%s", myCard.suit);

– Arrow operator (->) - use with pointers to structure variables
card *myCardPtr = &myCard;
printf("%s", myCardPtr->suit);

myCardPtr->suit equivalent to (*myCardPtr).suit

 2000 Prentice Hall, Inc. All rights reserved.

10.5 Using Structures With Functions

• Passing structures to functions
– Pass entire structure

• Or, pass individual members
– Both pass call by value

• To pass structures call-by-reference
– Pass its address
– Pass reference to it

• To pass arrays call-by-value
– Create a structure with the array as a member
– Pass the structure

 2000 Prentice Hall, Inc. All rights reserved.

10.6 Typedef

• typedef
– Creates synonyms (aliases) for previously defined data types
– Use typedef to create shorter type names.
– Example:

typedef Card *CardPtr;
– Defines a new type name CardPtr as a synonym for type

Card *
– typedef does not create a new data type

• Only creates an alias

 2000 Prentice Hall, Inc. All rights reserved.

10.7 Example: High-Performance Card-
shuffling and Dealing Simulation

• Pseudocode:
– Create an array of card structures
– Put cards in the deck
– Shuffle the deck
– Deal the cards

 2000 Prentice Hall, Inc. All rights reserved.

Outline

1. Load headers

1.1 Define struct

1.2 Function
prototypes

1.3 Initialize deck[]
and face[]

1.4 Initialize suit[]

1 /* Fig. 10.3: fig10_03.c
2 The card shuffling and dealing program using structures */
3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <time.h>
6
7 struct card {
8 const char *face;
9 const char *suit;
10 };
11
12 typedef struct card Card;
13
14 void fillDeck(Card * const, const char *[],
15 const char *[]);
16 void shuffle(Card * const);
17 void deal(const Card * const);
18
19 int main()
20 {
21 Card deck[52];
22 const char *face[] = { "Ace", "Deuce", "Three",
23 "Four", "Five",
24 "Six", "Seven", "Eight",
25 "Nine", "Ten",
26 "Jack", "Queen", "King"};
27 const char *suit[] = { "Hearts", "Diamonds",
28 "Clubs", "Spades"};
29
30 srand(time(NULL));

 2000 Prentice Hall, Inc. All rights reserved.

Outline

2. Randomize

2. fillDeck

2.1 shuffle

2.2 deal

3. Function definitions

31
32 fillDeck(deck, face, suit);
33 shuffle(deck);
34 deal(deck);
35 return 0;
36 }
37
38 void fillDeck(Card * const wDeck, const char * wFace[],
39 const char * wSuit[])
40 {
41 int i;
42
43 for (i = 0; i <= 51; i++) {
44 wDeck[i].face = wFace[i % 13];
45 wDeck[i].suit = wSuit[i / 13];
46 }
47 }
48
49 void shuffle(Card * const wDeck)
50 {
51 int i, j;
52 Card temp;
53
54 for (i = 0; i <= 51; i++) {
55 j = rand() % 52;
56 temp = wDeck[i];
57 wDeck[i] = wDeck[j];
58 wDeck[j] = temp;
59 }
60 }

Put all 52 cards in the deck.
face and suit determined by
remainder (modulus).

Select random number between 0 and 51.
Swap element i with that element.

 2000 Prentice Hall, Inc. All rights reserved.

Outline

3. Function definitions

61

62 void deal(const Card * const wDeck)

63 {

64 int i;

65

66 for (i = 0; i <= 51; i++)

67 printf("%5s of %-8s%c", wDeck[i].face,

68 wDeck[i].suit,

69 (i + 1) % 2 ? '\t' : '\n');

70 }

Cycle through array and print
out data.

 2000 Prentice Hall, Inc. All rights reserved.

Outline

Program Output

Eight of Diamonds Ace of Hearts
Eight of Clubs Five of Spades
Seven of Hearts Deuce of Diamonds
Ace of Clubs Ten of Diamonds

Deuce of Spades Six of Diamonds
Seven of Spades Deuce of Clubs
Jack of Clubs Ten of Spades
King of Hearts Jack of Diamonds

Three of Hearts Three of Diamonds
Three of Clubs Nine of Clubs
Ten of Hearts Deuce of Hearts
Ten of Clubs Seven of Diamonds
Six of Clubs Queen of Spades
Six of Hearts Three of Spades
Nine of Diamonds Ace of Diamonds
Jack of Spades Five of Clubs
King of Diamonds Seven of Clubs
Nine of Spades Four of Hearts
Six of Spades Eight of Spades

Queen of Diamonds Five of Diamonds
Ace of Spades Nine of Hearts
King of Clubs Five of Hearts
King of Spades Four of Diamonds

Queen of Hearts Eight of Hearts
Four of Spades Jack of Hearts
Four of Clubs Queen of Clubs

 2000 Prentice Hall, Inc. All rights reserved.

10.8 Unions

• union
– Memory that contains a variety of objects over time
– Only contains one data member at a time
– Members of a union share space
– Conserves storage
– Only the last data member defined can be accessed

• union declarations
– Same as struct

union Number {
int x;
float y;

};
Union myObject;

 2000 Prentice Hall, Inc. All rights reserved.

10.8 Unions (II)

• Valid union operations
– Assignment to union of same type: =
– Taking address: &
– Accessing union members: .
– Accessing members using pointers: ->

 2000 Prentice Hall, Inc. All rights reserved.

Outline

1. Define union

1.1 Initialize variables

2. Set variables

3. Print

1 /* Fig. 10.5: fig10_05.c

2 An example of a union */

3 #include <stdio.h>

4

5 union number {

6 int x;

7 double y;

8 };

9

10 int main()

11 {

12 union number value;

13

14 value.x = 100;

15 printf("%s\n%s\n%s%d\n%s%f\n\n",

16 "Put a value in the integer member",

17 "and print both members.",

18 "int: ", value.x,

19 "double:\n", value.y);

20

21 value.y = 100.0;

22 printf("%s\n%s\n%s%d\n%s%f\n",

23 "Put a value in the floating member",

24 "and print both members.",

25 "int: ", value.x,

26 "double:\n", value.y);

27 return 0;

28 }

 2000 Prentice Hall, Inc. All rights reserved.

Outline

Program Output

Put a value in the integer member
and print both members.
int: 100
double:
-92559592117433136000.00000

Put a value in the floating member
and print both members.
int: 0
double:
100.000000

 2000 Prentice Hall, Inc. All rights reserved.

10.9 Bitwise Operators

• All data represented internally as sequences of bits
– Each bit can be either 0 or 1
– Sequence of 8 bits forms a byte

Operator Name Description

& bitwise AND The bits in the result are set to 1 if the corresponding bits
in the two operands are both 1.

| bitwise OR The bits in the result are set to 1 if at least one of the
corresponding bits in the two operands is 1.

^ bitwise exclusive OR The bits in the result are set to 1 if exactly one of the
corresponding bits in the two operands is 1.

<< left shift Shifts the bits of the first operand left by the number of bits
specified by the second operand; fill from right with 0 bits.

>> right shift Shifts the bits of the first operand right by the number of
bits specified by the second operand; the method of filling
from the left is machine dependent.

~ One’s complement All 0 bits are set to 1 and all 1 bits are set to 0.

 2000 Prentice Hall, Inc. All rights reserved.

Outline

1. Function prototype

1.1 Initialize variables

2. Function calls

2.1 Print

1 /* Fig. 10.9: fig10_09.c
2 Using the bitwise AND, bitwise inclusive OR, bitwise
3 exclusive OR and bitwise complement operators */
4 #include <stdio.h>
5
6 void displayBits(unsigned);
7
8 int main()
9 {
10 unsigned number1, number2, mask, setBits;
11
12 number1 = 65535;
13 mask = 1;
14 printf("The result of combining the following\n");
15 displayBits(number1);
16 displayBits(mask);
17 printf("using the bitwise AND operator & is\n");
18 displayBits(number1 & mask);
19
20 number1 = 15;
21 setBits = 241;
22 printf("\nThe result of combining the following\n");
23 displayBits(number1);
24 displayBits(setBits);
25 printf("using the bitwise inclusive OR operator | is\n");
26 displayBits(number1 | setBits);
27
28 number1 = 139;
29 number2 = 199;
30 printf("\nThe result of combining the following\n");

 2000 Prentice Hall, Inc. All rights reserved.

Outline

2.1 Print

3. Function definition

31 displayBits(number1);
32 displayBits(number2);
33 printf("using the bitwise exclusive OR operator ^ is\n");
34 displayBits(number1 ^ number2);
35
36 number1 = 21845;
37 printf("\nThe one's complement of\n");
38 displayBits(number1);
39 printf("is\n");
40 displayBits(~number1);
41
42 return 0;
43 }
44
45 void displayBits(unsigned value)
46 {
47 unsigned c, displayMask = 1 << 31;
48
49 printf("%7u = ", value);
50
51 for (c = 1; c <= 32; c++) {
52 putchar(value & displayMask ? '1' : '0');
53 value <<= 1;
54
55 if (c % 8 == 0)
56 putchar(' ');
57 }
58
59 putchar('\n');
60 }

MASK created with only one set bit

i.e. (10000000 00000000)

The MASK is constantly ANDed with value.

MASK only contains one bit, so if the AND
returns true it means value must have that
bit.

value is then shifted to test the next bit.

 2000 Prentice Hall, Inc. All rights reserved.

Outline

Program Output

The result of combining the following
65535 = 00000000 00000000 11111111 11111111

1 = 00000000 00000000 00000000 00000001
using the bitwise AND operator & is

1 = 00000000 00000000 00000000 00000001

The result of combining the following
15 = 00000000 00000000 00000000 00001111
241 = 00000000 00000000 00000000 11110001

using the bitwise inclusive OR operator | is
255 = 00000000 00000000 00000000 11111111

The result of combining the following
139 = 00000000 00000000 00000000 10001011
199 = 00000000 00000000 00000000 11000111

using the bitwise exclusive OR operator ^ is
76 = 00000000 00000000 00000000 01001100

The one's complement of
21845 = 00000000 00000000 01010101 01010101

is
4294945450 = 11111111 11111111 10101010 10101010

 2000 Prentice Hall, Inc. All rights reserved.

10.10 Bit Fields

• Bit field
– Member of a structure whose size (in bits) has been specified
– Enable better memory utilization
– Must be declared as int or unsigned
– Cannot access individual bits

• Declaring bit fields
– Follow unsigned or int member with a colon (:) and an integer

constant representing the width of the field
– Example:

struct BitCard {
unsigned face : 4;
unsigned suit : 2;
unsigned color : 1;

};

 2000 Prentice Hall, Inc. All rights reserved.

10.10 Bit Fields (II)

• Unnamed bit field
– Field used as padding in the structure
– Nothing may be stored in the bits

struct Example {
unsigned a : 13;
unsigned : 3;
unsigned b : 4;

}

– Unnamed bit field with zero width aligns next bit field to a new
storage unit boundary

 2000 Prentice Hall, Inc. All rights reserved.

10.11 Example: A Game of Chance and
Introducing enum

• Enumeration
– Set of integers represented by identifiers
– Enumeration constants - like symbolic constants whose

values automatically set
• Values start at 0 and are incremented by 1
• Values can be set explicitly with =
• Need unique constant names

– Declare variables as normal
• Enumeration variables can only assume their enumeration

constant values (not the integer representations)

 2000 Prentice Hall, Inc. All rights reserved.

10.11 Example: A Game of Chance and
Introducing enum (II)

• Example:
enum Months { JAN = 1, FEB, MAR, APR, MAY,
JUN, JUL, AUG, SEP, OCT, NOV, DEC};

– Starts at 1, increments by 1

 2000 Prentice Hall, Inc. All rights reserved.

Outline

1. Define enumeration

1.1 Initialize variable

2. Loop

2.1 Print

1 /* Fig. 10.18: fig10_18.c

2 Using an enumeration type */

3 #include <stdio.h>

4

5 enum months { JAN = 1, FEB, MAR, APR, MAY, JUN,

6 JUL, AUG, SEP, OCT, NOV, DEC };

7

8 int main()

9 {

10 enum months month;

11 const char *monthName[] = { "", "January", "February",

12 "March", "April", "May",

13 "June", "July", "August",

14 "September", "October",

15 "November", "December" };

16

17 for (month = JAN; month <= DEC; month++)

18 printf("%2d%11s\n", month, monthName[month]);

19

20 return 0;

21 }

 2000 Prentice Hall, Inc. All rights reserved.

Outline

Program Output

1 January
2 February
3 March
4 April
5 May
6 June
7 July
8 August
9 September

10 October
11 November
12 December

