
OBJECT ORIENTED
PROGRAMMING USING C++

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Chapter 15 - C++ As A
"Better C"

Outline
15.1 Introduction
15.2 C++
15.3 A Simple Program: Adding Two Integers
15.4 C++ Standard Library
15.5 Header Files
15.6 Inline Functions
15.7 References and Reference Parameters
15.8 Default Arguments and Empty Parameter Lists
15.9 Unary Scope Resolution Operator
15.10 Function Overloading
15.11 Function Templates

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Objectives

• In this chapter, you will learn:
– To become familiar with the C++ enhancements to C.
– To become familiar with the C++ standard library.
– To understand the concept of inline functions.
– To be able to create and manipulate references.
– To understand the concept of default arguments.
– To understand the role the unary scope resolution

operator has in scoping.
– To be able to overload functions.
– To be able to define functions that can perform similar

operations on different types of data.

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

15.1 Introduction

• First 14 Chapters
– Procedural programming
– Top-down program design with C

• Chapters 15 to 23
– C++ portion of book
– Object based programming (classes, objects, encapsulation)
– Object oriented programming (inheritance, polymorphism)
– Generic programming (class and function templates)

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

15.2 C++

• C++
– Improves on many of C's features
– Has object-oriented capabilities

• Increases software quality and reusability
– Developed by Bjarne Stroustrup at Bell Labs

• Called "C with classes"
• C++ (increment operator) - enhanced version of C

– Superset of C
• Can use a C++ compiler to compile C programs
• Gradually evolve the C programs to C++

• ANSI C++
– Final version at http://www.ansi.org/
– Free, older version at http://www.cygnus.com/misc/wp/

http://www.ansi.org/
http://www.cygnus.com/misc/wp/

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

15.3 A Simple Program: Adding Two
Integers

• File extensions
– C files: .c
– C++ files: .cpp (which we use), .cxx, .C (uppercase)

• Differences
– C++ allows you to "comment out" a line by preceding it with
//

– For example: // text to ignore

– <iostream> - input/output stream header file
– Return types - all functions must declare their return type

• C does not require it, but C++ does
– Variables in C++ can be defined almost anywhere

• In C, required to defined variables in a block, before any
executable statements

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

15.3 A Simple Program: Adding Two
Integers (II)

• Input/Output in C++
– Performed with streams of characters
– Streams sent to input/output objects

• Output
– std::cout - standard output stream (connected to screen)
– << stream insertion operator ("put to")
– std::cout << "hi";

• Puts "hi" to std::cout, which prints it on the screen

• Input
– std::cin - standard input object (connected to keyboard)
– >> stream extraction operator ("get from")
– std::cin >> myVariable;

• Gets stream from keyboard and puts it into myVariable

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

15.3 A Simple Program: Adding Two
Integers (III)

• std::endl

– "end line"
– Stream manipulator - prints a newline and flushes output

buffer
• Some systems do not display output until "there is enough text

to be worthwhile"
• std::endl forces text to be displayed

• using statements
– Allow us to remove the std:: prefix
– Discussed later

• Cascading
– Can have multiple << or >> operators in a single statement

std::cout << "Hello " << "there" << std::endl;

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

fig15_01.cpp

Enter first integer
45
Enter second integer
72
Sum is 117

1 // Fig. 15.1: fig15_01.cpp
2 // Addition program
3 #include <iostream>
4

5 int main()
6 {
7 int integer1;
8

9 std::cout << "Enter first integer\n";
10 std::cin >> integer1;
11

12 int integer2, sum; // declaration
13

14 std::cout << "Enter second integer\n";
15 std::cin >> integer2;
16 sum = integer1 + integer2;
17 std::cout << "Sum is " << sum << std::endl;
18

19 return 0; // indicate that program ended successfully
20 } // end function main

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

15.4 C++ Standard Library

• C++ programs built from
– Functions
– Classes

• Most programmers use library functions

• Two parts to learning C++
– Learn the language itself
– Learn the library functions

• Making your own functions
– Advantage: you know exactly how they work
– Disadvantage: time consuming, difficult to maintain

efficiency and design well

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

15.5 Header Files

• Header files
– Each standard library has header files

• Contain function prototypes, data type definitions, and
constants

– Files ending with .h are "old-style" headers

• User defined header files
– Create your own header file

• End it with .h
– Use #include "myFile.h" in other files to load your

header

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

15.5 Header Files
Standard library
header file Explanation

<cassert> Contains macros and information for adding diagnostics that aid
program debugging. The old version of this header file is
<assert.h>.

<cctype> Contains function prototypes for functions that test characters for
certain properties, that can be used to convert lowercase letters to
uppercase letters and vice versa. This header file replaces header file
<ctype.h>.

<cfloat> Contains the floating-point size limits of the system. This header file
replaces header file <float.h>.

<climits> Contains the integral size limits of the system. This header file replaces
header file <limits.h>.

<cmath> Contains function prototypes for math library functions. This header file
replaces header file <math.h>.

<cstdio> Contains function prototypes for the standard input/output library
functions and information used by them. This header file replaces
header file <stdio.h>.

<cstdlib> Contains function prototypes for conversions of numbers to text, text to
numbers, memory allocation, random numbers and various other utility
functions. This header file replaces header file <stdlib.h>.

<cstring> Contains function prototypes for C-style string processing functions.
This header file replaces header file <string.h>.

<ctime> Contains function prototypes and types for manipulating the time and
date. This header file replaces header file <time.h>.

<iostream> Contains function prototypes for the standard input and standard output
functions. This header file replaces header file <iostream.h>.

Fig. 15.2 Standard library header files. (Part 1 of 3)

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

15.5 Header Files
Standard library
header file Explanation

<iomanip> Contains function prototypes for the stream manipulators that enable
formatting of streams of data. This header file replaces <iomanip.h>.

<fstream> Contains function prototypes for functions that perform input from files
on disk and output to files on disk. This header file replaces header file
<fstream.h>.

<utility> Contains classes and functions that are used by many standard library
header files.

<vector>, <list>,
<deque>, <queue>,
<stack>, <map>,
<set>, <bitset>

These header files contain classes that implement the standard library
containers. Containers are used to store data during a program’s
execution.

<functional> Contains classes and functions used by standard library algorithms.
<memory> Contains classes and functions used by the standard library to allocate

memory to the standard library containers.
<iterator> Contains classes for accessing data in the standard library containers.
<algorithm> Contains functions for manipulating data in standard library containers.

<exception>,
<stdexcept>

These header files contain classes that are used for exception handling
(discussed in Chapter 23).

Fig. 15.2 Standard library header files. (Part 2 of 3)

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

15.5 Header Files

Standard library
header file Explanation

<string> Contains the definition of class string from the standard library.
<sstream> Contains prototypes for functions that perform input from strings in

memory and output to strings in memory.
<locale> Contains classes and functions normally used by stream processing to

process data in the natural form for different languages (e.g., monetary
formats, sorting strings, character presentation, etc.).

<limits> Contains classes for defining the numerical data type limits on each
computer platform.

<typeinfo> Contains classes for run-time type identification (determining data types
at execution time).

Fig. 15.2 Standard library header files. (Part 3 of 3)

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

15.6 Inline Functions
• Function calls

– Cause execution-time overhead
– Qualifier inline before function return type "advises" a

function to be inlined
• Puts copy of function's code in place of function call

– Speeds up performance but increases file size
– Compiler can ignore the inline qualifier

• Ignores all but the smallest functions
inline double cube(const double s)

{ return s * s * s; }

• Using statements
– By writing using std::cout; we can write cout instead

of std::cout in the program
– Same applies for std::cin and std::endl

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

fig15_03.cpp

1 // Fig. 15.3: fig15_03.cpp
2 // Using an inline function to calculate
3 // the volume of a cube.
4 #include <iostream>
5

6 using std::cout;
7 using std::cin;
8 using std::endl;
9

10 inline double cube(const double s) { return s * s * s; }
11

12 int main()
13 {
14 double side;
15

16 for (int k = 1; k < 4; k++) {
17 cout << "Enter the side length of your cube: ";
18 cin >> side;
19 cout << "Volume of cube with side "
20 << side << " is " << cube(side) << endl;
21 } // end for
22

23 return 0;
24 } // end function main

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Program Output

Enter the side length of your cube: 1.0

Volume of cube with side 1 is 1

Enter the side length of your cube: 2.3

Volume of cube with side 2.3 is 12.167

Enter the side length of your cube: 5.4

Volume of cube with side 5.4 is 157.464

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

15.6 Inline Functions (II)

• bool

– Boolean - new data type, can either be true or false
C++ Keywords

Keywords common to the
C and C++ programming
languages

auto break case char const

continue default do double else

enum extern float for goto

if int long register return

short signed sizeof static struct

switch typedef union unsigned void

volatile while

C++ only keywords

asm bool catch class const_cast

delete dynamic_cast explicit false friend

inline mutable namespace new operator

private protected public reinterpret_cast

static_cast template this throw true

try typeid typename using virtual

wchar_t

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

15.7 References and Reference Parameters

• Call by value
– Copy of data passed to function
– Changes to copy do not change original

• Call by reference
– Function can directly access data
– Changes affect original

• Reference parameter alias for argument
– Use &

void change(int &variable)

{

variable += 3;

}

• Adds 3 to the original variable input
– int y = &x

• Changing y changes x as well

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

15.7 References and Reference Parameters
(II)

• Dangling references
– Make sure to assign references to variables
– If a function returns a reference to a variable, make sure the

variable is static
• Otherwise, it is automatic and destroyed after function ends

• Multiple references
– Like pointers, each reference needs an &
int &a, &b, &c;

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

fig15_05.cpp (Part
1 of 2)

1 // Fig. 15.5: fig15_05.cpp
2 // Comparing call-by-value and call-by-reference
3 // with references.
4 #include <iostream>
5

6 using std::cout;
7 using std::endl;
8

9 int squareByValue(int);
10 void squareByReference(int &);
11
12 int main()
13 {
14 int x = 2, z = 4;
15

16 cout << "x = " << x << " before squareByValue\n"
17 << "Value returned by squareByValue: "
18 << squareByValue(x) << endl
19 << "x = " << x << " after squareByValue\n" << endl;
20

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

fig15_05.cpp (Part
2 of 2)

Program Outputx = 2 before squareByValue
Value returned by squareByValue: 4
x = 2 after squareByValue

z = 4 before squareByReference
z = 16 after squareByReference

21 cout << "z = " << z << " before squareByReference" << endl;
22 squareByReference(z);

23 cout << "z = " << z << " after squareByReference" << endl;
24

25 return 0;

26 } // end function main
27

28 int squareByValue(int a)
29 {
30 return a *= a; // caller's argument not modified
31 } // end function squareByValue

32

33 void squareByReference(int &cRef)
34 {
35 cRef *= cRef; // caller's argument modified
36 } // end function squareByReference

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

fig15_06.cpp

x = 3
y = 3
x = 7
y = 7

1 // Fig. 15.6: fig15_06.cpp
2 // References must be initialized
3 #include <iostream>
4

5 using std::cout;
6 using std::endl;
7

8 int main()
9 {
10 int x = 3, &y = x; // y is now an alias for x
11

12 cout << "x = " << x << endl << "y = " << y << endl;
13 y = 7;
14 cout << "x = " << x << endl << "y = " << y << endl;
15

16 return 0;
17 } // end function main

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

fig15_.07.cpp

Error E2304 Fig15_07.cpp 10: Reference variable 'y' must be initialized
in function main()

Microsoft Visual C++ compiler error message

Fig15_07.cpp(10) : error C2530: 'y' : references must be initialized

1 // Fig. 15.7: fig15_07.cpp
2 // References must be initialized
3 #include <iostream>
4

5 using std::cout;
6 using std::endl;
7

8 int main()
9 {
10 int x = 3, &y; // Error: y must be initialized
11

12 cout << "x = " << x << endl << "y = " << y << endl;
13 y = 7;
14 cout << "x = " << x << endl << "y = " << y << endl;
15

16 return 0;
17 } // end function main
Borland C++ command-line compiler error message

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

15.8 Default Arguments and Empty
Parameter Lists

• If function parameter omitted, gets default value
– Can be constants, global variables, or function calls
– If not enough parameters specified, rightmost go to their

defaults

• Set defaults in function prototype
int myFunction(int x = 1, int y = 2, int z = 3);

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

15.8 Default Arguments and Empty
Parameter Lists (II)

• Empty parameter lists
– In C, empty parameter list means function takes any

argument
• In C++ it means function takes no arguments

– To declare that a function takes no parameters:
• Write void or nothing in parentheses
• Prototypes:

void print1(void);

void print2();

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

fig15_08.cpp (Part
1 of 2)

1 // Fig. 15.8: fig15_08.cpp
2 // Using default arguments
3 #include <iostream>
4

5 using std::cout;
6 using std::endl;
7

8 int boxVolume(int length = 1, int width = 1, int height = 1);
9

10 int main()
11 {
12 cout << "The default box volume is: " << boxVolume()
13 << "\n\nThe volume of a box with length 10,\n"
14 << "width 1 and height 1 is: " << boxVolume(10)
15 << "\n\nThe volume of a box with length 10,\n"
16 << "width 5 and height 1 is: " << boxVolume(10, 5)
17 << "\n\nThe volume of a box with length 10,\n"
18 << "width 5 and height 2 is: " << boxVolume(10, 5, 2)
19 << endl;
20

21 return 0;
22 } // end function main
23

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

fig15_08.cpp (Part
2 of 2)

The default box volume is: 1

The volume of a box with length 10,
width 1 and height 1 is: 10

The volume of a box with length 10,
width 5 and height 1 is: 50

The volume of a box with length 10,
width 5 and height 2 is: 100

24 // Calculate the volume of a box
25 int boxVolume(int length, int width, int height)
26 {
27 return length * width * height;
28 } // end function boxVolume

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

15.9 Unary Scope Resolution Operator

• Unary scope resolution operator (::)
– Access global variables if a local variable has same name
– Instead of variable use ::variable

• static_cast<newType> (variable)

– Creates a copy of variable of type newType
– Convert ints to floats, etc.

• Stream manipulators
– Can change how output is formatted
– setprecision - set precision for floats (default 6 digits)
– setiosflags - formats output
– setwidth - set field width
– Discussed in depth in Chapter 21

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

fig15_09.cpp (Part
1 of 2)

1 // Fig. 15.9: fig15_09.cpp
2 // Using the unary scope resolution operator
3 #include <iostream>
4

5 using std::cout;
6 using std::endl;
7 using std::ios;
8

9 #include <iomanip>
10

11 using std::setprecision;
12 using std::setiosflags;
13 using std::setw;
14

15 const double PI = 3.14159265358979;
16

17 int main()
18 {
19 const float PI = static_cast< float >(::PI);
20

21 cout << setprecision(20)
22 << " Local float value of PI = " << PI
23 << "\nGlobal double value of PI = " << ::PI << endl;
24

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

fig15_09.cpp (Part
2 of 2)

Local float value of PI = 3.141592741012573242
Global double value of PI = 3.141592653589790007

Local float value of PI = 3.1415927410

Microsoft Visual C++ compiler output

Local float value of PI = 3.1415927410125732
Global double value of PI = 3.14159265358979

Local float value of PI = 3.1415927410

25 cout << setw(28) << "Local float value of PI = "
26 << setiosflags(ios::fixed | ios::showpoint)
27 << setprecision(10) << PI << endl;
28 return 0;
29 } // end function main
Borland C++ command-line compiler output

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

15.10 Function Overloading

• Function overloading:
– Functions with same name and different parameters
– Overloaded functions should perform similar tasks

• Function to square ints and function to square floats
int square(int x) {return x * x;}

float square(float x) { return x * x; }

– Program chooses function by signature
• Signature determined by function name and parameter types
• Type safe linkage - ensures proper overloaded function called

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

fig15_10.cpp

The square of integer 7 is 49
The square of double 7.5 is 56.25

1 // Fig. 15.10: fig15_10.cpp
2 // Using overloaded functions
3 #include <iostream>
4

5 using std::cout;
6 using std::endl;
7

8 int square(int x) { return x * x; }
9

10 double square(double y) { return y * y; }
11

12 int main()
13 {
14 cout << "The square of integer 7 is " << square(7)
15 << "\nThe square of double 7.5 is " << square(7.5)
16 << endl;
17

18 return 0;
19 } // end function main

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

15.11 Function Templates

• Function templates
– Compact way to make overloaded functions
– Keyword template
– Keyword class or typename before every formal type parameter

(built in or user defined)
template < class T > //or template< typename T >
T square(T value1)
{

return value1 * value1;
}

– T replaced by type parameter in function call
int x;

int y = square(x);

– If int parameter, all T's become ints
– Can use float, double, long...

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

fig15_11.cpp (Part
1 of 2)

1 // Fig. 15.11: fig15_11.cpp
2 // Using a function template
3 #include <iostream>
4

5 using std::cout;
6 using std::cin;
7 using std::endl;
8

9 template < class T >
10 T maximum(T value1, T value2, T value3)
11 {
12 T max = value1;
13
14 if (value2 > max)
15 max = value2;
16
17 if (value3 > max)
18 max = value3;
19
20 return max;
21 } // end function template maximum
22

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

fig15_11.cpp (Part
2 of 2)

23 int main()
24 {
25 int int1, int2, int3;
26

27 cout << "Input three integer values: ";
28 cin >> int1 >> int2 >> int3;
29 cout << "The maximum integer value is: "
30 << maximum(int1, int2, int3); // int version
31

32 double double1, double2, double3;
33

34 cout << "\nInput three double values: ";
35 cin >> double1 >> double2 >> double3;
36 cout << "The maximum double value is: "
37 << maximum(double1, double2, double3); // double version
38

39 char char1, char2, char3;
40

41 cout << "\nInput three characters: ";
42 cin >> char1 >> char2 >> char3;
43 cout << "The maximum character value is: "
44 << maximum(char1, char2, char3) // char version
45 << endl;
46

47 return 0;
48 } // end function main

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Program Output

Input three integer values: 1 2 3

The maximum integer value is: 3

Input three double values: 3.3 2.2 1.1

The maximum double value is: 3.3

Input three characters: A C B

The maximum character value is: C

