
OBJECT ORIENTED
PROGRAMMING USING C++

CS 342: C++ Polymorphism

Overview of C++ Polymorphism
• Two main kinds of types in C++: native and user-defined

– User-defined types: declared classes, structs, unions (including
those provided by C++ libraries)

– Native types are “built in” to the C++ language itself: int, long,
float, …

– A typedef creates new type names for other types

• Public inheritance creates sub-types
– Inheritance only applies to user-defined classes (and structs)
– A publicly derived class is-a subtype of its base class
– Liskov Substitution Principle: if S is a subtype of T, then wherever

you need a T you can use an S

CS 342: C++ Polymorphism

Overview of C++ Polymorphism
• Polymorphism depends on virtual member functions in

C++
– Base class declares a member function virtual
– Derived class overrides the base class’s definition of the function

• Private inheritance creates a form of encapsulation
– Class form of the Adapter Pattern
– A privately derived class wraps its base class

CS 342: C++ Polymorphism

Public, Protected, Private Inheritance
class A {
public:
int i;

protected:
int j;

private:
int k;

};

Class B : public A {
// ...
};
Class C : protected A {
// ...
};
Class D : private A {
// ...
};

• Class A declares 3 variables
– i is public to all users of class A
– j is protected. It can only be used by

methods in class A or its derived classes
– k is private. It can only be used by

methods in class A
• Class B inherits publicly from A

– i is again public to all users of class B
– j is again protected. It can be used by

methods in class B or its derived classes
• Class C uses protected inheritance from A

– i is now protected in C, so the only users
of class C that can access i are the methods
of class C

– j is again protected. It can be used by
methods in class C or its derived classes

• Class D uses private inheritance from A
– i and j are private in D, so users of D

cannot access them, only methods of D itself

CS 342: C++ Polymorphism

Inheritance & Constructor Ordering
class A {
public:
A(int i) :m_i(i) {
cout << "A“ << endl;}

~A() {cout<<"~A"<<endl;}
private:
int m_i;

};
class B : public A {
public:
B(int i, int j) :A(i), m_j(j) {
cout << “B” << endl;}

~B() {cout << “~B” << endl;}
private:

int m_j_;
};
int main (int, char *[]) {

B b(2,3);
return 0;

};

• Class and member construction order
– B constructor called on object b in main

• Passes integer values 2 and 3
– B constructor calls A constructor

• passes value 2 to A constructor via
initializer list

– A constructor initializes member m_i
• with passed value 2

– Body of A constructor runs
• outputs “A”

– B constructor initializes member m_j
• with passed value 3

– Body of B constructor runs
• outputs “B”

CS 342: C++ Polymorphism

Inheritance & Destructor Ordering
class A {
public:
A(int i) :m_i(i) {
cout << "A“ << endl;}

~A() {cout<<"~A"<<endl;}
private:
int m_i;

};
class B : public A {
public:
B(int i, int j) :A(i), m_j(j) {
cout << “B” << endl;}

~B() {cout << “~B” << endl;}
private:

int m_j_;
};
int main (int, char *[]) {

B b(2,3);
return 0;

};

• Class and member destructor order:
– B destructor called on object b in main
– Body of B destructor runs

• outputs “~B”
– B destructor calls member m_j

“destructor”
• int is a built-in type, so it’s a no-op

– B destructor calls A destructor
– Body of A destructor runs

• outputs “~A”
– A destructor calls member m_i

destructor
• again a no-op

• Compare dtor and ctor order
– at the level of each class, the order of

steps is reversed in ctor vs. dtor
– ctor: base class, members, body
– dtor: body, members, base class

CS 342: C++ Polymorphism

Virtual Functionsclass A {
public:
A () {cout<<" A";}
virtual ~A () {cout<<" ~A";}

};

class B : public A {
public:
B () :A() {cout<<" B";}
virtual ~B() {cout<<" ~B";}

};

int main (int, char *[]) {
// prints "A B"
A *ap = new B;

// prints "~B ~A" : would only
// print "~A" if non-virtual
delete ap;

return 0;
};

• Used to support polymorphism
with pointers and references

• Declared virtual in a base class
• Can be overridden in derived

class
– Overriding only happens when

signatures are the same
– Otherwise it just overloads the

function or operator name
• Ensures derived class function

definition is resolved
dynamically
– E.g., that destructors farther down

the hierarchy get called

CS 342: C++ Polymorphism

Virtual Functionsclass A {
public:
void x() {cout<<"A:x";};
virtual void y() {cout<<"A:y";};

};

class B : public A {
public:
void x() {cout<<"B:x";};
virtual void y() {cout<<"B:y";};

};

int main () {
B b;
A *ap = &b; B *bp = &b;
b.x (); // prints "B:x"
b.y (); // prints "B:y"
bp->x (); // prints "B:x"
bp->y (); // prints "B:y"
ap.x (); // prints "A:x"
ap.y (); // prints "B:y"
return 0;

};

• Only matter with pointer or reference
– Calls on object itself resolved statically
– E.g., b.y();

• Look first at pointer/reference type
– If non-virtual there, resolve statically

• E.g., ap->x();
– If virtual there, resolve dynamically

• E.g., ap->y();
• Note that virtual keyword need not be

repeated in derived classes
– But it’s good style to do so

• Caller can force static resolution of a
virtual function via scope operator
– E.g., ap->A::y(); prints “A::y”

CS 342: C++ Polymorphism

Pure Virtual Functionsclass A {
public:
virtual void x() = 0;
virtual void y() = 0;

};

class B : public A {
public:
virtual void x();

};

class C : public B {
public:
virtual void y();

};

int main () {
A * ap = new C;
ap->x ();
ap->y ();
delete ap;
return 0;

};

• A is an Abstract Base Class
– Similar to an interface in Java
– Declares pure virtual functions (=0)

• Derived classes override pure
virtual methods
– B overrides x(), C overrides y()

• Can’t instantiate class with
declared or inherited pure virtual
functions
– A and B are abstract, can create a C

• Can still have a pointer to an
abstract class type
– Useful for polymorphism

CS 342: C++ Polymorphism

Summary: Tips on Polymorphism
• Push common code and variables up into base

classes
• Use public inheritance for polymorphism
• Polymorphism depends on dynamic typing

– Use a base-class pointer or reference if you want
polymorphism

– Use virtual member functions for dynamic overriding
• Use private inheritance only for encapsulation
• Use abstract base classes to declare interfaces
• Even though you don’t have to, label each virtual

method (and pure virtual method) in derived classes

