
OBJECT ORIENTED
PROGRAMMING USING C++

CSE 332: C++ Overloading

Overview of C++ Overloading
• Overloading occurs when the same operator or

function name is used with different signatures

• Both operators and functions can be overloaded

• Different definitions must be distinguished by their
signatures (otherwise which to call is ambiguous)
– Reminder: signature is the operator/function name and the

ordered list of its argument types
– E.g., add(int,long) and add(long,int) have different

signatures
– E.g., add(const Base &) and add(const Derived &)

have different signatures, even if Derived is-a Base
– Most specific match is used to select which one to call

CSE 332: C++ Overloading

Overloading vs. Overriding
• Overriding a base class method is similar to

overloading
– But definitions are distinguished by their scopes

rather than by their signatures

• C++ can distinguish method definitions
according to either static or dynamic type
– Depends on whether a method is virtual or not
– Depends on whether called via a reference or

pointer vs. directly on an object
– Depends on whether the call states the scope

explicitly (e.g., Foo::baz();)

CSE 332: C++ Overloading

Function Overloading
class A {
public:

int add(int i, int j);

// not allowed, would be
// ambiguous with above
// long add(int m, int n);

// Ok, different signature
long add(long m, long n);

};

int
main (int argc, char **argv) {
int a = 7;
int b = 8;
int c = add(a, b);
return 0;

}

• Calls to overloaded functions and
operators are resolved by
– Finding all possible matches based

on passed arguments
• May involve type promotion
• May involve instantiating templates

– Finding the “best match” among
those possible matches

• Signature does not include the
return type
– Which might not help even if it did,

i.e., calls may ignore result
– So, overloading can’t be resolved by

return type alone
– Compiler generates an error if the

call can’t be resolved

CSE 332: C++ Overloading

Operator Overloading
class A {
friend ostream &operator<<

(ostream &, const A &);
private:

int m_a;
};

ostream &operator<<
(ostream &out, const A &a) {
out << "A::m_a = " << a.m_a;
return out;

}

int main () {
A a;
cout << a << endl;
return 0;

}

• Similar to function
overloading
– Resolved by signature
– Best match is used

• But the list of operators and
the “arity” of each is fixed
– Can’t invent operators
– Must use same number of

arguments as for built-in types
(except for operator())

– Some operators are off limits
:: (scope) . (dot) ?: (conditional)
sizeof typeid (RTTI)
type casting operators

CSE 332: C++ Overloading

Operator Symmetry, Precedence
class Complex {
public:
// constructor from real and
// imaginary parts
Complex (int r, int i);

// addition
Complex operator+ (const Complex &);

// multiplication
Complex operator* (const Complex &);

// exponentiation
Complex operator^ (const Complex &);

private:
int real_;
int imaginary_;

};

• In general, make
operators symmetric
– Don’t mix base and

derived types in their
parameter lists

• Operators always obey
the same precedence
rules (Prata pp. 1058)
– Can lead to some

unexpected mistakes
– E.g., what’s wrong with

this Complex number
expression?
a + b * c ^ 2

CSE 332: C++ Overloading

Member/Non-Member Overloading
class A {
friend bool operator<
(const A &lhs, const A &rhs);

public:
bool operator==(const A &a) const;

private:
int m_a;

};
// member operator
bool A::operator==(const A &a) const {
// note: object itself is
// the first argument, can be const
return m_a == a.m_a;

}
// non-member operator
bool operator<
(const A &lhs, const A &rhs) {
return lhs.m_a < rhs.m_a;

}

• Remember a this pointer is passed
to any non-static member function
– So, for member functions and

operators the object itself does not
appear in the argument list

– For non-member functions and
operators all parameters appear

• So, the rule about operator arity is
obeyed in code on left
– Both < and == are binary operators
– Can you see what needs to be added

to both of these operators?

• Non-member operators are useful
when working with classes you wrote
and classes you didn’t write
– E.g., ostream << and istream >>

• Non-member operators are also
useful to preserve symmetry
– May avoid unexpected type

conversions, especially up an
inheritance hierarchy

CSE 332: C++ Overloading

Type Cast Operators (and typedef)
int main (int,

const char * argv[]) {

// cast away constness
char *p =
const_cast<char*>(argv[0])

// convert to smaller type
int i = 50;
char c = static_cast<char>(i);

// downcast a pointer (returns
// 0 if *bptr isn’t a Derived)
Base * bptr = new Derived;
Derived * dptr =
dynamic_cast<Derived*>(bptr);

// reinterpret a pointer
typedef unsigned long ulong;
ulong cookie =
reinterpret_cast<ulong>(p);

}

• Four type cast operators in C++
– Only use these when you must
– You cannot overload them
– Take a type parameter (generic)

• To get a mutable interface from a
const one, use const_cast

• To force a static type conversion
that’s known to be safe at runtime
use static_cast

• To force a dynamic type
conversion that’s known to be
safe at runtime use dynamic_cast

• To reinterpret a type as another
type (strongest form of casting)
use reinterpret_cast

• To alias a type, use typedef

CSE 332: C++ Overloading

Summary: Tips on Overloading
• Use virtual overriding when you want to substitute

different subtypes polymorphically
– E.g., move() in derived and base classes

• Use overloading when you want to provide related
interfaces to similar abstractions
– E.g., migrate(Bird &) vs. migrate(Elephant &)

• Use different names when the abstractions differ
– E.g., fly() versus walk()

