
OBJECT ORIENTED 
PROGRAMMING USING C++

1



Slide 2



Slide 3

Chapter 9

Created by David Mann, North Idaho College

Separate Compilation
and 

Namespaces



Slide 4

Overview

 Separate Compilation (9.1)
 Namespaces (9.2)



Slide 5

Separate Compilation
 C++ allows you to divide a program into parts

 Each part can be stored in a separate file

 Each part can be compiled separately

 A class definition can be stored separately from a 
program.

 This allows you to use the class in multiple programs

9.1



Slide 6

ADT Review
 An ADT is a class defined to separate the

interface and the implementation
 All member variables are private
 The class definition along with the function and 

operator declarations are grouped together  as the
interface of the ADT

 Group the implementation of the operations together
and make them unavailable to the programmer 
using the ADT



Slide 7

The ADT Interface
 The interface of the ADT includes

 The class definition
 The declarations of the basic operations which can be

one of the following
 Public member functions 
 Friend functions
 Ordinary functions
 Overloaded operators

 The function comments



Slide 8

The ADT Implementation
 The implementation of the ADT includes

 The function definitions
 The public member functions
 The private member functions
 Non-member functions
 Private helper functions

 Overloaded operator definitions
 Member variables
 Other items required by the definitions



Slide 9

Separate Files
 In C++ the ADT interface and implementation 

can be stored in separate files
 The interface file stores the ADT interface
 The implementation file stores the ADT 

implementation



Slide 10

A Minor Compromise
 The public part of the class definition is part of 

the ADT interface
 The private part of the class definition is part of 

the ADT implementation
 This would hide it from those using the ADT

 C++ does not allow splitting the public and
private parts of the class definition across files
 The entire class definition is usually in the 

interface file



Slide 11

Case Study: DigitalTime
 The interface file of the DigitalTime  ADT class

contains the class definition
 The values of the class are:

 Time of day, such as 9:30, in 24 hour notation
 The public members are part of the interface
 The private members are part of the implementation
 The comments in the file should provide all the 

details needed to use the ADT



Slide 12

Naming The Interface File
 The DigitalTime ADT interface is stored in a 

file named dtime.h
 The .h suffix means this is a header file
 Interface files are always header files

 A program using dtime.h must include it using
an include directive 

#include "dtime.h"
Display 9.1



Slide 13

#include " " or < > ?
 To include a predefined header file use < and >

#include <iostream>
 < and > tells the compiler to look where the system

stores predefined  header files
 To include a header file you wrote, use " and "

#include "dtime.h"
 " and " usually cause the compiler to look 

in the current directory for the header file



Slide 14

The Implementation File
 Contains the definitions of the ADT functions
 Usually has the same name as the header file but

a different suffix
 Since our header file is named dtime.h,  the 

implementation file is named dtime.cpp
 Suffix depends on your system 

(some use .cxx or .CPP)



Slide 15

#include "dtime.h"
 The implementation file requires an include 

directive to include the interface file:

#include "dtime.h"

Display 9.2 (1)
Display 9.2 (2)
Display 9.2 (3)
Display 9.2 (4)



Slide 16

The Application File
 The Application file is the file that contains the 

program that uses the ADT
 It is also called a driver file
 Must use an include directive to include the 

interface file:
#include "dtime.h"

Display 9.3



Slide 17

Running The Program
 Basic steps required to run a program:

(Details vary from system to system!)

 Compile the implementation file

 Compile the application file

 Link the files to create an executable program using 
a utility called a linker
 Linking is often done automatically



Slide 18

Compile dtime.h ?
 The interface file is not compiled separately

 The preprocessor replaces any occurrence of 
#include "dtime.h" with the text of dtime.h before 
compiling 

 Both the implementation file and the 
application file contain #include "dtime.h"
 The text of dtime.h is seen by the compiler in each of 

these files
 There is no need to compile dtime.h separately



Slide 19

Why Three Files?
 Using separate files permits

 The ADT to be used in other programs without
rewriting the definition of the class for each

 Implementation file to be compiled once even 
if multiple programs use the ADT

 Changing the implementation file does not 
require changing the program using the ADT



Slide 20

Reusable Components
 An ADT coded in separate files can be used 

over and over
 The reusability of such an ADT class 

 Saves effort since it does not need to be 
 Redesigned
 Recoded
 Retested

 Is likely to result in more reliable components



Slide 21

Multiple Classes
 A program may use several classes

 Each could be stored in its own interface and 
implementation files
 Some files can "include" other files, that include still others

 It is possible that the same interface file could be 
included in multiple files

 C++ does not allow multiple declarations of a class
 The #ifndef directive can be used to prevent 

multiple declarations of a class



Slide 22

Introduction to  #ifndef
 To prevent multiple declarations of a class,

we can use these directives:
 #define DTIME_H 

adds DTIME_H to a list indicating DTIME_H has 
been seen

 #ifndef  DTIME_H
checks to see if DTIME_H has been defined 

 #endif
If DTIME_H has been defined, skip to #endif



Slide 23

Using #ifndef
 Consider this code in the interface file:

#ifndef DTIME_H
#define DTIME_H
< The DigitalTime class

definition goes here>
#endif

 The first time a #include "dtime.h" is found, 
DTIME_H and the class are defined

 The next time a #include "dtime.h" is found, 
all lines between #ifndef and #endif are skipped

true false



Slide 24

Why DTIME_H?
 DTIME_H is the normal convention for 

creating an identifier to use with ifndef
 It is the file name in all caps
 Use ' _ ' instead of ' . '

 You may use any other identifier, but will make
your code more difficult to read

Display 9.4



Slide 25

Defining Libraries
 You can create your own libraries of functions

 You do not have to define a class to use separate
files

 If you have a collection of functions…
 Declare them in a header file with their comments
 Define them in an implementation file
 Use the library files just as you use your class interface

and implementation files



Slide 26

Section 9.1 Conclusion
 Can you

 Determine which belongs to the interface, 
implementation or application files?
 Class definition
 Declaration of a non-member function used as an 

operation of the ADT
 Definition of a member function
 The main part of the program

 Describe the difference between a C++ class and an
ADT?



Slide 27

Namespaces
 A namespace is a collection of name definitions,

such as class definitions and variable declarations

 If a program uses classes and functions written by 
different programmers, it may be that the same name
is used for different things

 Namespaces help us deal with this problem

9.2



Slide 28

The Using Directive
 #include <iostream> places names such as cin

and cout in the std namespace
 The program does not know about names in the

std namespace until you add
using namespace std;

(if you do not use the std namespace, you can
define cin and cout to behave differently)



Slide 29

The Global Namespace
 Code you write is in a namespace

 it is in the global namespace unless you specify 
a namespace

 The global namespace does not require the 
using directive



Slide 30

Name Conflicts
 If the same name is used in two namespaces

 The namespaces cannot be used at the same time
 Example: If  my_function is defined in 

namespaces ns1 and ns2,  the two versions of 
my_function could be used in one program 
by using local using directives this way:

{
using namespace ns1;
my_function( );

}

{
using namespace ns2;
my_function( );

}



Slide 31

Scope Rules For using
 A block is a list of statements enclosed in { }s
 The scope of a using directive is the block in 

which it appears
 A using directive placed at the beginning of a 

file, outside any block, applies to the entire file



Slide 32

Creating a Namespace
 To place code in a namespace

 Use a namespace grouping
 namespace Name_Space_Name

{
Some_Code

}

 To use the namespace created
 Use the appropriate using directive

 using namespace Name_Space_Name;



Slide 33

Namespaces:
Declaring a Function

 To add a function to a namespace
 Declare the function in a namespace grouping

namespace savitch1
{

void greeting( );
}



Slide 34

Namespaces:
Defining a Function

 To define a function declared in a namespace
 Define the function in a namespace grouping

namespace savitch1
{

void greeting( )
{

cout << "Hello from namespace savitch1.\n";
}

}



Slide 35

Namespaces:
Using a Function

 To use a function defined in a namespace
 Include the using directive in the program where

the namespace is to be used
 Call the function as the function would normally

be called
int main( )

{
{ 

using namespace savitch1;
greeting( );

}
Using directive's scope Display 9.5 (1-2)



Slide 36

A Namespace Problem
 Suppose you have the namespaces below:

 Is there an easier way to use both namespaces
considering that my_function is in both?

namespace ns1
{

fun1( );
my_function( );

}

namespace ns2
{

fun2( );
my_function( );

}



Slide 37

Qualifying Names
 Using declarations (not directives) allow us to 

select individual functions to use from 
namespaces
 using ns1::fun1; //makes only fun1 in ns1 available 

 The scope resolution operator identifies a namespace here
 Means we are using only namespace ns1's version of fun1

 If you only want to use the function once, call it 
like this

ns1::fun1( );



Slide 38

Qualifiying Parameter Names
 To qualify the type of a parameter with a 

using declaration
 Use the namespace and the type name

int get_number (std::istream input_stream)
…

 istream is the istream defined in namespace std
 If istream is the only name needed from namespace std, 

then you do not need to use
using namespace std;



Slide 39

Directive/Declaration 
(Optional)

 A using declaration (using std::cout;) makes 
only one name available from the namespace

 A using directive makes all the names in the 
namespace available



Slide 40

A Subtle Point (Optional)
 A using directive potentially introduces a name
 If ns1 and ns2 both define my_function,

using namespace ns1;
using namespace ns2;

is OK, provided my_function is never used!



Slide 41

A Subtle Point Continued
 A using declaration introduces a name into your 

code: no other use of the name can be made

using ns1::my_function;
using ns2::my_function;

is illegal, even if my_function is never used



Slide 42

Unnamed Namespaces
 As we have done helper functions so far, they 

are not really hidden  (Display 9.2)
 We would like them to be local to the implementation

file to implement information hiding
 The unnamed namespace can hide helper

functions
 Names defined in the unnamed namespace are 

local to the compilation unit
 A compilation unit is a file (such as an implementation file)

plus any file(s) #included in the file



Slide 43

The unnamed grouping
 Every compilation unit has an unnamed 

namespace
 The namespace grouping is written as any other 

namespace, but no name is given:

namespace 
{

void sample_function( )
…

}  //unnamed namespace



Slide 44

Names In The 
unnamed namespace

 Names in the unnamed namespace
 Can be reused outside the compilation unit
 Can be used in the compilation unit 

without a namespace qualifier
 The rewritten version of the DigitalTime

interface is found in                      while the

implementation file is shown in   

Display 9.6

Display 9.7 (1)
Display 9.7 (2)



Slide 45

Namespaces 
In An Application

 The application file for the DigitalTime ADT is
shown in Display 9.8 (1)

Display 9.8 (2)



Slide 46

Compilation Units Overlap
 A header file is #included in two files

 It is in two compilation units
 Participates in two unnamed namespaces!
 This is OK as long as each of the compilation

units makes sense independent of the other
 A name in the header file's unnamed namespace 

cannot be defined again in the unnamed namespace of the
implementation or application file



Slide 47

Naming Namespaces
 To avoid choosing a name for a namespace that

has already been used
 Add your last name to the name of the namespace

 Or, use some other unique string



Slide 48

Global or unnamed?
 Names in the global namespace have global 

scope (all files)
 They are available without a qualifier to all the 

program files
 Names in the unnamed namespace are local to

a compilation unit
 They are available without a qualifier within the 

compilation unit



Slide 49

Section 9.2 Conclusion
 Can you

 Explain the purpose of using interface and 
implementation files?

 Describe a namespace?

 Demonstrate three ways to use the names in a 
namespace?



Slide 50

Chapter 9 -- End



Slide 51

Display 9.1 Back Next



Slide 52

Display 9.2
(1/4) Back Next



Slide 53

Display 9.2
(2/4) Back Next



Slide 54

Display 9.2
(3/4) Back Next



Slide 55

Display 9.2
(4/4) Back Next



Slide 56

Display 9.3 Back Next



Slide 57

Display 9.4 Back Next



Slide 58

Display 9.5
(1/2) Back Next



Slide 59

Display 9.5
(2/2) Back Next



Slide 60

Display 9.6 Back Next



Slide 61

Display 9.7
(1/2) Back Next



Slide 62

Display 9.7
(2/2) NextBack



Slide 63

Display 9.8
(1/2) Back Next



Slide 64

Display 9.8
(2/2) Back Next


