
OBJECT ORIENTED
PROGRAMMING USING C++

2

class Rectangle{
private:

int numVertices;
float *xCoord, *yCoord;

public:
void set(float *x, float *y, int nV);
float area();

};

Inheritance Concept

Rectangle Triangle

Polygon

class Polygon{
private:
int numVertices;
float *xCoord, *yCoord;

public:
void set(float *x, float *y, int nV);

};

class Triangle{
private:

int numVertices;
float *xCoord, *yCoord;

public:
void set(float *x, float *y, int nV);
float area();

};

3

Rectangle Triangle

Polygon
class Polygon{

protected:
int numVertices;
float *xCoord, float *yCoord;

public:
void set(float *x, float *y, int nV);

};

class Rectangle : public Polygon{
public:

float area();
};

class Rectangle{
protected:
int numVertices;
float *xCoord, float *yCoord;

public:
void set(float *x, float *y, int nV);
float area();

};

Inheritance Concept

4

Rectangle Triangle

Polygon
class Polygon{

protected:
int numVertices;
float *xCoord, float *yCoord;

public:
void set(float *x, float *y, int nV);

};

class Triangle : public Polygon{
public:
float area();

};

class Triangle{
protected:
int numVertices;
float *xCoord, float *yCoord;

public:
void set(float *x, float *y, int nV);
float area();

};

Inheritance Concept

5

Inheritance Concept

Point

Circle 3D-Point

class Point{
protected:

int x, y;
public:

void set (int a, int b);
};

class Circle : public Point{
private:

double r;
};

class 3D-Point: public Point{
private:

int z;
};

x
y

x
y
r

x
y
z

6

• Augmenting the original class

• Specializing the original class

Inheritance Concept

RealNumber

ComplexNumber

ImaginaryNumber

Rectangle Triangle

Polygon Point

Circle

real
imag

real imag

3D-Point

7

Why Inheritance ?

Inheritance is a mechanism for

• building class types from existing class types

• defining new class types to be a
– specialization
– augmentation

of existing types

8

Define a Class Hierarchy

• Syntax:
class DerivedClassName : access-level BaseClassName

where
– access-level specifies the type of derivation

• private by default, or
• public

• Any class can serve as a base class
– Thus a derived class can also be a base class

9

Class Derivation
Point

3D-Point

class Point{
protected:

int x, y;
public:

void set (int a, int b);
};

class 3D-Point : public Point{
private:

double z;
… …

};

class Sphere : public 3D-Point{
private:

double r;
… …

};

Sphere

Point is the base class of 3D-Point, while 3D-Point is the base class of Sphere

10

What to inherit?

• In principle, every member of a base class is
inherited by a derived class
– just with different access permission

11

Access Control Over the Members
• Two levels of access control

over class members
– class definition
– inheritance type

base class/ superclass/
parent class

derived class/ subclass/
child class

de
riv

e
fro

m

m
em

be
rs

 g
oe

s
to

class Point{
protected: int x, y;
public: void set(int a, int b);

};

class Circle : public Point{
… …

};

12

• The type of inheritance defines the access level for the
members of derived class that are inherited from the base
class

Access Rights of Derived Classes

private protected public
private - - -

protected private protected protected
public private protected public

Type of Inheritance

A
ccess C

ontrol
for M

em
bers

13

class daughter : --------- mother{
private: double dPriv;
public: void mFoo ();

};

Class Derivation
class mother{

protected: int mProc;
public: int mPubl;
private: int mPriv;

};

class daughter : --------- mother{
private: double dPriv;
public: void dFoo ();

};

void daughter :: dFoo (){
mPriv = 10; //error
mProc = 20;

};

private/protected/public int main() {
/*….*/

}

class grandDaughter : public daughter {
private: double gPriv;
public: void gFoo ();

};

14

What to inherit?

• In principle, every member of a base class is
inherited by a derived class
– just with different access permission

• However, there are exceptions for
– constructor and destructor
– operator=() member
– friends

Since all these functions are class-specific

15

Constructor Rules for Derived Classes
The default constructor and the destructor of the
base class are always called when a new object
of a derived class is created or destroyed.

class A {
public:

A ()
{cout<< “A:default”<<endl;}

A (int a)
{cout<<“A:parameter”<<endl;}

};

class B : public A
{

public:
B (int a)

{cout<<“B”<<endl;}
};

B test(1);
A:default
B

output:

16

Constructor Rules for Derived Classes
You can also specify an constructor of the
base class other than the default constructor

class A {
public:

A ()
{cout<< “A:default”<<endl;}

A (int a)
{cout<<“A:parameter”<<endl;}

};

class C : public A {
public:

C (int a) : A(a)
{cout<<“C”<<endl;}

};

C test(1);
A:parameter
C

output:

DerivedClassCon (derivedClass args) : BaseClassCon (baseClass
args)

{ DerivedClass constructor body }

17

Define its Own Members

Point

Circle

class Point{
protected:

int x, y;
public:

void set(int a, int b);
};

class Circle : public Point{
private:

double r;
public:

void set_r(double c);
};

x
y

x
y
r

class Circle{
protected:

int x, y;
private:

double r;
public:

void set(int a, int b);
void set_r(double c);

};

The derived class can also define
its own members, in addition to
the members inherited from the
base class

18

Even more …
• A derived class can override methods defined in its parent

class. With overriding,
– the method in the subclass has the identical signature to the method

in the base class.
– a subclass implements its own version of a base class method.

class A {
protected:

int x, y;
public:

void print ()
{cout<<“From A”<<endl;}

};

class B : public A {
public:

void print ()
{cout<<“From B”<<endl;}

};

19

class Point{
protected:

int x, y;
public:

void set(int a, int b)
{x=a; y=b;}

void foo ();
void print();

};

class Circle : public Point{
private: double r;
public:

void set (int a, int b, double c) {
Point :: set(a, b); //same name function call

r = c;
}
void print(); };

Access a Method

Circle C;
C.set(10,10,100); // from class Circle
C.foo (); // from base class Point
C.print(); // from class Circle

Point A;
A.set(30,50); // from base class Point

A.print(); // from base class Point

20

Putting Them Together
• Time is the base class
• ExtTime is the derived class with

public inheritance
• The derived class can

– inherit all members from the base
class, except the constructor

– access all public and protected
members of the base class

– define its private data member
– provide its own constructor
– define its public member functions
– override functions inherited from

the base class

ExtTime

Time

21

class Time Specification

class Time{

public :

void Set (int h, int m, int s) ;
void Increment () ;
void Write () const ;
Time (int initH, int initM, int initS) ; // constructor
Time () ; // default constructor

protected :

int hrs ;
int mins ;
int secs ;

} ;

// SPECIFICATION FILE (time.h)

22

Class Interface Diagram

Protected data:

hrs

mins

secs

Set

Increment

Write

Time

Time

Time class

23

Derived Class ExtTime
// SPECIFICATION FILE (exttime.h)

#include “time.h”
enum ZoneType {EST, CST, MST, PST, EDT, CDT, MDT, PDT } ;

class ExtTime : public Time
// Time is the base class and use public inheritance

{
public :

void Set (int h, int m, int s, ZoneType timeZone) ;
void Write () const; //overridden
ExtTime (int initH, int initM, int initS, ZoneType initZone) ;
ExtTime (); // default constructor

private :
ZoneType zone ; // added data member

} ;

24

Class Interface Diagram

Protected data:

hrs

mins

secs

ExtTime class

Set

Increment

Write

Time

Time

Set

Increment

Write

ExtTime

ExtTime

Private data:
zone

25

Implementation of ExtTime

Default Constructor

ExtTime :: ExtTime ()
{

zone = EST ;
}

The default constructor of
base class, Time(), is
automatically called, when an
ExtTime object is created.

ExtTime et1;

hrs = 0
mins = 0
secs = 0
zone = EST

et1

26

Implementation of ExtTime
Another Constructor

ExtTime :: ExtTime (int initH, int initM, int initS, ZoneType initZone)
: Time (initH, initM, initS)
// constructor initializer

{
zone = initZone ;

}

ExtTime *et2 =
new ExtTime(8,30,0,EST);

hrs = 8
mins = 30
secs = 0
zone = EST

et2

5000

???
6000

5000

27

Implementation of ExtTime

void ExtTime :: Set (int h, int m, int s, ZoneType timeZone)
{

Time :: Set (hours, minutes, seconds); // same name function call

zone = timeZone ;
}

void ExtTime :: Write () const // function overriding
{

string zoneString[8] =
{“EST”, “CST”, MST”, “PST”, “EDT”, “CDT”, “MDT”, “PDT”} ;

Time :: Write () ;
cout <<‘ ‘<<zoneString[zone]<<endl;

}

28

Working with ExtTime

#include “exttime.h”
… …

int main()
{

ExtTime thisTime (8, 35, 0, PST) ;
ExtTime thatTime ; // default constructor called

thatTime.Write() ; // outputs 00:00:00 EST

thatTime.Set (16, 49, 23, CDT) ;
thatTime.Write() ; // outputs 16:49:23 CDT

thisTime.Increment () ;
thisTime.Increment () ;
thisTime.Write () ; // outputs 08:35:02 PST

}

29

Take Home Message

• Inheritance is a mechanism for defining new
class types to be a specialization or an
augmentation of existing types.

• In principle, every member of a base class is
inherited by a derived class with different
access permissions, except for the constructors

