
OBJECT ORIENTED
PROGRAMMING USING C++

ISBN 0-321-33025-0

Abstract Data
Types and
Encapsulation
Concepts

1-3

Chapter 11 Topics

• The Concept of Abstraction
• Introduction to Data Abstraction
• Design Issues for Abstract Data Types
• Language Examples
• Parameterized Abstract Data Types
• Encapsulation Constructs
• Naming Encapsulations

1-4

The Concept of Abstraction

• An abstraction is a view or representation
of an entity that includes only the most
significant attributes

• The concept of abstraction is fundamental
in programming (and computer science)

• Nearly all programming languages support
process abstraction with subprograms

• Nearly all programming languages
designed since 1980 support data
abstraction

1-5

Introduction to Data Abstraction

• An abstract data type is a user-defined
data type that satisfies the following two
conditions:
– The representation of, and operations on,

objects of the type are defined in a single
syntactic unit

– The representation of objects of the type is
hidden from the program units that use these
objects, so the only operations possible are
those provided in the type's definition

1-6

Advantages of Data Abstraction

• Advantage of the first condition
– Program organization, modifiability

(everything associated with a data structure is
together), and separate compilation

• Advantage the second condition
– Reliability--by hiding the data

representations, user code cannot directly
access objects of the type or depend on the
representation, allowing the representation to
be changed without affecting user code

1-7

Design Issues

• A syntactic unit to define an ADT
• Built-in operations

– Assignment
– Comparison

• Common operations
– Iterators
– Accessors
– Constructors
– Destructors

• Parameterized ADTs

1-8

Language Examples: Ada

• The encapsulation construct is called
packages
– Specification package (the interface)
– Body package (implementation of the entities

named in the specification)
• Information Hiding

– The representation of type appears in a part of the
specification called the private part

• More restricted form with limited private types
– Define the ADT as a pointer and provide the pointed-

to structure’s definition in the body package

1-9

An Example in Ada
package Stack_Pack is

type stack_type is limited private;
max_size: constant := 100;
function empty(stk: in stack_type) return Boolean;
procedure push(stk: in out stack_type; elem:in Integer);
procedure pop(stk: in out stack_type);
function top(stk: in stack_type) return Integer;

private -- hidden from clients
type list_type is array (1..max_size) of Integer;
type stack_type is record

list: list_type;
topsub: Integer range 0..max_size) := 0;

end record;
end Stack_Pack

1-10

Language Examples: C++

• Based on C struct type and Simula 67
classes

• The class is the encapsulation device
• All of the class instances of a class share a

single copy of the member functions
• Each instance of a class has its own copy of

the class data members
• Instances can be static, stack dynamic, or

heap dynamic

1-11

Language Examples: C++ (continued)

• Information Hiding
– Private clause for hidden entities
– Public clause for interface entities
– Protected clause for inheritance

1-12

Language Examples: C++ (continued)

• Constructors:
– Functions to initialize the data members of

instances (they do not create the objects)
– May also allocate storage if part of the object

is heap-dynamic
– Can include parameters to provide

parameterization of the objects
– Implicitly called when an instance is created
– Can be explicitly called
– Name is the same as the class name

1-13

Language Examples: C++ (continued)

• Destructors
– Functions to cleanup after an instance is

destroyed; usually just to reclaim heap storage
– Implicitly called when the object’s lifetime ends
– Can be explicitly called
– Name is the class name, preceded by a tilde (~)

1-14

An Example in C++
class stack {

private:
int *stackPtr, maxLen, topPtr;

public:
stack() { // a constructor

stackPtr = new int [100];
maxLen = 99;
topPtr = -1;

};
~stack () {delete [] stackPtr;};
void push (int num) {…};
void pop () {…};
int top () {…};
int empty () {…};

}

1-15

Evaluation of ADTs in C++ and Ada

• C++ support for ADTs is similar to
expressive power of Ada

• Both provide effective mechanisms for
encapsulation and information hiding

• Ada packages are more general
encapsulations

1-16

Language Examples: C++ (continued)

• Friend functions or classes - to provide
access to private members to some
unrelated units or functions
– Necessary in C++

1-17

Language Examples: Java
• Similar to C++, except:

– All user-defined types are classes
– All objects are allocated from the heap and

accessed through reference variables
– Individual entities in classes have access

control modifiers (private or public), rather
than clauses

– Java has a second scoping mechanism,
package scope, which can be used in place of
friends

• All entities in all classes in a package that do not
have access control modifiers are visible
throughout the package

1-18

An Example in Java
class StackClass {

private:

private int [] *stackRef;

private int [] maxLen, topIndex;

public StackClass() { // a constructor

stackRef = new int [100];

maxLen = 99;

topPtr = -1;

};

public void push (int num) {…};

public void pop () {…};

public int top () {…};

public boolean empty () {…};

}

1-19

Language Examples: C#
• Based on C++ and Java
• Adds two access modifiers, internal and

protected internal
• All class instances are heap dynamic
• Default constructors are available for all

classes
• Garbage collection is used for most heap

objects, so destructors are rarely used
• structs are lightweight classes that do

not support inheritance

1-20

Language Examples: C# (continued)
• Common solution to need for access to

data members: accessor methods (getter
and setter)

• C# provides properties as a way of
implementing getters and setters without
requiring explicit method calls

1-21

C# Property Example
public class Weather {

public int DegreeDays { //** DegreeDays is a property
get {return degreeDays;}
set {degreeDays = value;}

}
private int degreeDays;
...
}

...
Weather w = new Weather();
int degreeDaysToday, oldDegreeDays;
...
w.DegreeDays = degreeDaysToday;
...
oldDegreeDays = w.DegreeDays;

1-22

Parameterized Abstract Data Types

• Parameterized ADTs allow designing an
ADT that can store any type elements

• Also known as generic classes
• C++ and Ada provide support for

parameterized ADTs
• Java 5.0 provides a restricted form of

parameterized ADTs
• C# does not currently support

parameterized classes

1-23

Parameterized ADTs in Ada
• Ada Generic Packages

– Make the stack type more flexible by making the element type and the
size of the stack generic

generic
Max_size: Positive;
type Elem_Type is Private;
package Generic_Stack is
…
function Top(Stk: in out StackType) return Elem_type;
…
end Generic_Stack;

Package Integer_Stack is new Generics_Stack(100,Integer);
Package Float_Stack is new Generics_Stack(100,Float);

1-24

Parameterized ADTs in C++
• Classes can be somewhat generic by

writing parameterized constructor
functions

template <class type>
class stack {
…
stack (int size) {
stk_ptr = new int [size];
max_len = size - 1;
top = -1;

};
…

}

stack stk(100);

1-25

Encapsulation Constructs

• Large programs have two special needs:
– Some means of organization, other than simply

division into subprograms
– Some means of partial compilation (compilation

units that are smaller than the whole program)
• Obvious solution: a grouping of

subprograms that are logically related into
a unit that can be separately compiled
(compilation units)

• Such collections are called encapsulation

1-26

Nested Subprograms
• Organizing programs by nesting

subprogram definitions inside the logically
larger subprograms that use them

• Nested subprograms are supported in Ada
and Fortran 95

1-27

Encapsulation in C

• Files containing one or more subprograms
can be independently compiled

• The interface is placed in a header file
• Problem: the linker does not check types

between a header and associated
implementation

• #include preprocessor specification

1-28

Encapsulation in C++

• Similar to C
• Addition of friend functions that have

access to private members of the friend
class

1-29

Ada Packages

• Ada specification packages can include
any number of data and subprogram
declarations

• Ada packages can be compiled separately
• A package’s specification and body parts

can be compiled separately

1-30

C# Assemblies

• A collection of files that appear to be a
single dynamic link library or executable

• Each file contains a module that can be
separately compiled

• A DLL is a collection of classes and
methods that are individually linked to an
executing program

• C# has an access modifier called internal;
an internal member of a class is visible to
all classes in the assembly in which it
appears

1-31

Naming Encapsulations

• Large programs define many global names;
need a way to divide into logical groupings

• A naming encapsulation is used to create a
new scope for names

• C++ Namespaces
– Can place each library in its own namespace and

qualify names used outside with the namespace
– C# also includes namespaces

1-32

Naming Encapsulations (continued)

• Java Packages
– Packages can contain more than one class

definition; classes in a package are partial
friends

– Clients of a package can use fully qualified
name or use the import declaration

• Ada Packages
– Packages are defined in hierarchies which

correspond to file hierarchies
– Visibility from a program unit is gained with the
with clause

1-33

Summary

• The concept of ADTs and their use in program
design was a milestone in the development of
languages

• Two primary features of ADTs are the packaging of
data with their associated operations and
information hiding

• Ada provides packages that simulate ADTs
• C++ data abstraction is provided by classes
• Java’s data abstraction is similar to C++
• Ada and C++ allow parameterized ADTs
• C++, C#, Java, and Ada provide naming

encapsulation

