
OBJECT ORIENTED
PROGRAMMING USING C++

2

Procedural Concept

 The main program coordinates calls to
procedures and hands over appropriate data
as parameters

3

Object-Oriented Concept

 Objects of the program interact by sending
messages to each other

4

C++
 Supports Data Abstraction
 Supports OOP
 Encapsulation
 Inheritance
 Polymorphism

 Supports Generic Programming
 Containers
 Stack of char, int, double etc

 Generic Algorithms
 sort(), copy(), search() any container

Stack/Vector/List

5

Pointers, Dynamic Data, and
Reference Types
 Review on Pointers
 Reference Variables
 Dynamic Memory Allocation
 The new operator
 The delete operator
 Dynamic memory allocation for arrays

6

C++ Data Types

structured

array struct union class

address

pointer reference

simple

integral enum

char short int long bool

floating

float double long double

7

Array Basics
char str [8]:
 str is the base address of the array.
 We say str is a pointer because its value is

an address.
 It is a pointer constant because the value of

str itself cannot be changed by assignment.
It “points” to the memory location of a char.

str [0] [1] [2] [3] [4] [5] [6] [7]
‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\0’

6000

8

String Literals

char* p = “Hello”;
char[] q = “Hello”;
char* r = “Hello”;

 p[4] = ‘O’; // error: assignment to constant
 q[4] = ‘O’; // ok, q is an array of 5 characters
 p == r; // false; implementation

dependent

9

Addresses in Memory
 When a variable is declared, enough

memory to hold a value of that type is
allocated for it at an unused memory
location. This is the address of the variable

int x;
float number;
char ch;

x number ch

2000 2002 2006

10

Obtaining Memory Addresses
 The address of a non-array variable can be

obtained by using the address-of operator &
int x;
float number;
char ch;

cout << “Address of x is “ << &x << endl;

cout << “Address of number is “ << &number << endl;

cout << “Address of ch is “ << &ch << endl;

x number ch

2000 2002 2006

11

What is a Pointer Variable
 A pointer variable is a variable whose

value is the address of a location in
memory

 To declare a pointer variable, you must
specify the type of value that the pointer
will point to, for example,

int* ptr; // ptr will hold the address of an int

char* q; // q will hold the address of a char

12

Using a Pointer Variable

int x;
x = 12;

int* ptr;
ptr = &x;

2000

12

x

3000

ptr

12

NOTE: Because ptr holds the address of x,
we say that ptr “points to” x

2000

13

*: Dereference Operator

int x;
x = 12;

int* ptr;
ptr = &x;

cout << *ptr;

2000

12

x

3000

ptr

12

2000

NOTE: The value pointed to by ptr is denoted
by *ptr

14

Using the Dereference Operator

int x;
x = 12;

int* ptr;
ptr = &x;

*ptr = 5;

2000

12

x

3000

ptr

12

2000

// changes the value at
the address ptr points
to 5

5

15

Self-Test on Pointers

char ch;
ch = ‘A’;

char* q;
q = &ch;

*q = ‘Z’;
char* p;

p = q;

4000

A

ch

5000

4000

q

Z

6000

p

4000

// now both p and q point to ch

16

Pointers to Arrays

ptr

‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\0’

char msg[] =“Hello”;
char* ptr;
ptr = msg;
*ptr = ‘M’ ;
ptr++;

*ptr = ‘a’;

ptr = &msg[4];
// *ptr = o

msg
3000

3000

‘M’ ‘a’

3001

17

Pointers and Constants
char s[] = “Hello”;
char* p = ‘Z’;
const char* pc = s; // pointers to constant
pc[3] = ‘g’; // error
pc = p; // ok

char *const cpc = s; // constant pointer
cpc[3] = ‘a’; // ok
cpc = p; // error

18

Reference Variables
 Reference variable = alias for another variable
 Contains the address of a variable (like a pointer)
 No need to perform any dereferencing (unlike a pointer)
 Must be initialized when it is declared

int x = 5;
int &z = x; // z is another name for x
int &y ; // Error: reference must be initialized
cout << x << endl; -> prints 5
cout << z << endl; -> prints 5
z = 9; // same as x = 9;
cout << x << endl; -> prints 9
cout << z << endl; -> prints 9

19

Why Reference Variables
 Primarily used as function parameters
 Advantages of using references
 You don’t have to pass the address of a

variable
 You don’t have to dereference the

variable inside the called function

20

Reference Variable Example
#include <iostream.h>
// Function prototypes

(required in C++)

void p_swap(int *, int *);
void r_swap(int&, int&);
int main (void){
int v = 5, x = 10;
cout << v << x << endl;
p_swap(&v,&x);
cout << v << x << endl;
r_swap(v,x);
cout << v << x << endl;
return 0;

}

void r_swap(int &a, int &b)
{
int temp;
temp = a; (2)
a = b; (3)
b = temp;
}

void p_swap(int *a, int *b)
{

int temp;
temp = *a; (2)
*a = *b; (3)
*b = temp;

}

21

Dynamic Memory Allocation

 Static memory -
where global and static
variables live

 Heap memory -
dynamically allocated at
execution time
- "managed" memory
accessed using pointers

 Stack memory - used
by automatic variables

In C and C++, three types of memory are used by programs:

22

Three Kinds of Program Data
 STATIC DATA: Allocated at compiler time

 DYNAMIC DATA: explicitly allocated and
deallocated during program execution by
C++ instructions written by programmer
using operators new and delete

 AUTOMATIC DATA: automatically created at
function entry, resides in activation frame
of the function, and is destroyed when
returning from function

23

Dynamic Memory Allocation
Diagram

static data

Stack

Heap
R

un-tim
e allocated

m
em

ory

C
om

pile-tim
e

allocated
m

em
oryProgram

code

High-end

Low-end

24

Dynamic Memory Allocation
 In C, functions such as malloc() are used to

dynamically allocate memory from the
Heap.

 In C++, this is accomplished using the
new and delete operators

 new is used to allocate memory during
execution time
 returns a pointer to the address where

the object is to be stored
 always returns a pointer to the type that

follows the new

25

Operator new Syntax

new DataType

new DataType []

 If memory is available, in an area called the heap (or
free store) new allocates the requested object or
array, and returns a pointer to (address of) the
memory allocated.

 Otherwise, program terminates with error message.
 The dynamically allocated object exists until the

delete operator destroys it.

26

Operator new

char* ptr;

ptr = new char;

*ptr = ‘B’;

cout << *ptr;

 NOTE: Dynamic data has no variable name

2000

???

ptr

5000

5000

‘B’

27

The NULL Pointer
 There is a pointer constant called the “null

pointer” denoted by NULL
 But NULL is not memory address 0.

 NOTE: It is an error to dereference a pointer
whose value is NULL. Such an error may cause
your program to crash, or behave erratically.
It is the programmer’s job to check for this.

while (ptr != NULL) {
. . . // ok to use *ptr here

}

28

Operator delete Syntax

delete Pointer

delete [] Pointer

 The object or array currently pointed to by Pointer is
deallocated, and the value of Pointer is undefined. The
memory is returned to the free store..

 Good idea to set the pointer to the released memory to
NULL

 Square brackets are used with delete to deallocate a
dynamically allocated array.

29

Operator delete

char* ptr;

ptr = new char;

*ptr = ‘B’;

cout << *ptr;

delete ptr;

5000

5000

‘B’

2000

ptr

???

NOTE:
delete deallocates the
memory pointed to by ptr

30

Example

‘B’ ‘y’ ‘e’ ‘\0’
‘u’

ptr
3000

???

6000

NULL

// deallocates the array pointed to by ptr
// ptr itself is not deallocated
// the value of ptr becomes undefined

char *ptr ;

ptr = new char[5];

strcpy(ptr, “Bye”);

ptr[0] = ‘u’;

delete [] ptr;

ptr = NULL;

31

Pointers and Constants
char* p;
p = new char[20];

char c[] = “Hello”;
const char* pc = c; //pointer to a constant
pc[2] = ‘a’; // error
pc = p;

char *const cp = c; //constant pointer
cp[2] = ‘a’;
cp = p; // error

const char *const cpc = c; //constant pointer to a const
cpc[2] = ‘a’; //error
cpc = p; //error

32

Take Home Message
 Be aware of where a pointer points to, and

what is the size of that space.

 Have the same information in mind when you
use reference variables.

 Always check if a pointer points to NULL
before accessing it.

33

Hint for Lab #1
 How to parse the string from user input?
 char *strtok (char *s, const char *delim);
 strtok parses string s into tokens. The first call

should have s as the first element
 Subsequent calls should have the first argument

set to NULL
 How to convert a character number to

an integer?
 int atoi (const char *nptr)
 atoi converts the initial portion of the string

pointed by nptr to int.

