
OBJECT ORIENTED
PROGRAMMING USING C++

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

- Exception Handling

Outline
13.1 Introduction
13.2 When Exception Handling Should Be Used
13.3 Other Error-Handling Techniques
13.4 Basics of C++ Exception Handling: try, throw, catch
13.5 A Simple Exception-Handling Example: Divide by Zero
13.6 Throwing an Exception
13.7 Catching an Exception
13.8 Rethrowing an Exception
13.9 Exception Specifications
13.10 Processing Unexpected Exceptions
13.11 Stack Unwinding
13.12 Constructors, Destructors and Exception Handling
13.13 Exceptions and Inheritance
13.14 Processing new Failures
13.15 Class auto_ptr and Dynamic Memory Allocation
13.16 Standard Library Exception Hierarchy

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

13.1 Introduction

• errors can be dealt with at place error occurs
– easy to see if proper error checking implemented
– harder to read application itself and see how code works

• exception handling
– makes clear, robust, fault-tolerant programs

• common failures
– new not allocating memory
– out of bounds array subscript
– division by zero
– invalid function parameters

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

13.1 Introduction (II)

• exception handling - catch errors before they
occur
– deals with synchronous errors (i.e., divide by zero)
– does not deal with asynchronous errors - disk I/O completions,

mouse clicks - use interrupt processing
– used when system can recover from error

• exception handler - recovery procedure
– typically used when error dealt with in different place than where it

occurred
– useful when program cannot recover but must shut down cleanly

• exception handling should not be used for
program control
– not optimized, can harm program performance

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

13.1 Introduction (III)

• Exception handling improves fault-tolerance
– easier to write error-processing code
– specify what type of exceptions are to be caught

• Most programs support only single threads
– techniques in this chapter apply for multithreaded OS as well

(Windows NT, OS/2, some UNIX)

• Exception handling another way to return control
from a function or block of code

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

13.2 When Exception Handling Should Be
Used

• Error handling should be used for
– processing exceptional situations
– processing exceptions for components that cannot handle them

directly
– processing exceptions for widely used components (libraries,

classes, functions) that should not process their own exceptions
– large projects that require uniform error processing

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

13.3 Other Error-Handling Techniques

• Use assert
– if assertion false, the program terminates

• Ignore exceptions
– use this "technique" on casual, personal programs - not commercial!

• Abort the program
– appropriate for nonfatal errors give appearance that program functioned

correctly
– inappropriate for mission-critical programs, can cause resource leaks

• Set some error indicator
– program may not check indicator at all points there error could occur

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

13.3 Other Error-Handling Techniques (II)

• Test for the error condition
– issue an error message and call exit
– pass error code to environment

• setjump and longjump
– in <csetjmp>
– jump out of deeply nested function calls back to an error handler.
– dangerous - unwinds the stack without calling destructors for automatic

objects (more later)

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

13.4 Basics of C++ Exception Handling:
try, throw, catch

• a function can throw an exception object if it
detects an error
– object typically a character string (error message) or class object
– if exception handler exists, exception caught and handled
– otherwise, program terminates

• Format
– enclose code that may have an error in try block
– follow with one or more catch blocks

• each catch block has an exception handler
– if exception occurs and matches parameter in catch block, code

in catch block executed
– if no exception thrown, exception handlers skipped and control

resumes after catch blocks
– throw point - place where exception occurred

• control cannot return to throw point

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

13.5 A Simple Exception-Handling Example:
Divide by Zero

• Look at the format of try and catch blocks
• Afterwards, we will cover specifics

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

Outline

1. Class definition

1.1 Function definition

1 // Fig. 13.1: fig13_01.cpp

2 // A simple exception handling example.

3 // Checking for a divide-by-zero exception.

4 #include <iostream>

5

6 using std::cout;

7 using std::cin;

8 using std::endl;

9

10 // Class DivideByZeroException to be used in exception

11 // handling for throwing an exception on a division by zero.

12 class DivideByZeroException {

13 public:

14 DivideByZeroException()

15 : message("attempted to divide by zero") { }

16 const char *what() const { return message; }

17 private:

18 const char *message;

19 };

20

21 // Definition of function quotient. Demonstrates throwing

22 // an exception when a divide-by-zero exception is encountered.

23 double quotient(int numerator, int denominator)

24 {

25 if (denominator == 0)

26 throw DivideByZeroException();

27

28 return static_cast< double > (numerator) / denominator;

29 }

The function is defined to throw an
exception object if denominator == 0

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

Outline

1.2 Initialize variables

2. Input data

2.1 try and catch
blocks
2.2 Function call

3. Output result

30

31 // Driver program

32 int main()

33 {

34 int number1, number2;

35 double result;

36

37 cout << "Enter two integers (end-of-file to end): ";

38

39 while (cin >> number1 >> number2) {

40

41 // the try block wraps the code that may throw an

42 // exception and the code that should not execute

43 // if an exception occurs

44 try {

45 result = quotient(number1, number2);

46 cout << "The quotient is: " << result << endl;

47 }

48 catch (DivideByZeroException ex) { // exception handler

49 cout << "Exception occurred: " << ex.what() << '\n';

50 }

51

52 cout << "\nEnter two integers (end-of-file to end): ";

53 }

54

55 cout << endl;

56 return 0; // terminate normally

57 }

try block encloses code that may
throw an exception, along with
code that should not execute if an
exception occurs.

catch block follows try block, and
contains exception-handling code.

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

Outline

Program Output

Enter two integers (end-of-file to end): 100 7
The quotient is: 14.2857

Enter two integers (end-of-file to end): 100 0
Exception occurred: attempted to divide by zero

Enter two integers (end-of-file to end): 33 9
The quotient is: 3.66667

Enter two integers (end-of-file to end):

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

13.6 Throwing an Exception

• throw - indicates an exception has occurred
– usually has one operand (sometimes zero) of any type

• if operand an object, called an exception object
• conditional expression can be thrown

– code referenced in a try block can throw an exception
– exception caught by closest exception handler
– control exits current try block and goes to catch handler (if it

exists)
– Example (inside function definition):
if (denominator == 0)

throw DivideByZeroException();
• throws a DivideByZeroException object

• Exception not required to terminate program
– however, terminates block where exception occurred

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

13.7 Catching an Exception

• Exception handlers are in catch blocks
– Format: catch(exceptionType parameterName){

exception handling code
}

– caught if argument type matches throw type
– if not caught then terminate called which (by default) calls abort
– Example:
catch (DivideByZeroException ex) {

cout << "Exception occurred: " << ex.what() <<'\n'
}

• catches exceptions of type DivideByZeroException

• Catch all exceptions
catch(...) - catches all exceptions

• you do not know what type of exception occurred
• there is no parameter name - cannot reference the object

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

13.7 Catching an Exception (II)

• If no handler matches thrown object
– searches next enclosing try block

• if none found, terminate called
– if found, control resumes after last catch block
– if several handlers match thrown object, first one found is executed

• catch parameter matches thrown object when
– they are of the same type

• exact match required - no conversions allowed
– the catch parameter is a public base class of the thrown object
– the catch parameter is a base-class pointer/ reference type and

the thrown object is a derived-class pointer/ reference type
– the catch handler is catch(...)
– thrown const objects have const in the parameter type

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

13.7 Catching an Exception (III)

• unreleased resources
– resources may have been allocated when exception thrown
– catch handler should delete space allocated by new and close

any opened files

• catch handlers can throw exceptions
– exceptions can only be processed by outer try blocks

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

13.8 Rethrowing an Exception

• Rethrowing exceptions
– used when an exception handler cannot process an

exception
– rethrow exception with the statement:

throw;

• no arguments
• if no exception thrown in first place, calls terminate

– handler can always rethrow exception, even if it
performed some processing

– rethrown exception detected by next enclosing try
block

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

Outline

1. Load header

1.1 Function prototype

1 // Fig. 13.2: fig13_02.cpp

2 // Demonstration of rethrowing an exception.

3 #include <iostream>

4

5 using std::cout;

6 using std::endl;

7

8 #include <exception>

9

10 using std::exception;

11

12 void throwException()

13 {

14 // Throw an exception and immediately catch it.

15 try {

16 cout << "Function throwException\n";

17 throw exception(); // generate exception

18 }

19 catch(exception e)

20 {

21 cout << "Exception handled in function throwException\n";

Header file <exception> has
class exception

When called, throwException
throws an exception then catches it.

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

Outline

2. Function call

3. Output

Program Output

22 throw; // rethrow exception for further processing

23 }

24

25 cout << "This also should not print\n";

26 }

27

28 int main()

29 {

30 try {

31 throwException();

32 cout << "This should not print\n";

33 }

34 catch (exception e)

35 {

36 cout << "Exception handled in main\n";

37 }

38

39 cout << "Program control continues after catch in main"

40 << endl;

41 return 0;

42 }

Function throwException
Exception handled in function throwException
Exception handled in main
Program control continues after catch in main

The exception is rethrown

This line not executed because control
leaves the throw point and the
function ends

Catch the rethrown exception

Line not executed because of rethrown
exception. Control exits try block and
goes to appropriate catch block.

Control returns to first statement after the
catch block.

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

13.9 Exception Specifications

• exception specification (throw list)
– lists exceptions that can be thrown by a function

Example:
int g(double h) throw (a, b, c)
{

// function body
}

– function can throw listed exceptions or derived types
– if other type thrown, function unexpected called
– throw() (i.e., no throw list) states that function will not throw

any exceptions
• in reality, function can still throw exceptions, but calls unexpected

(more later)
– if no throw list specified, function can throw any exception

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

13.10 Processing Unexpected Exceptions

• function unexpected
– calls the function specified with set_unexpected

• default: terminate

• function terminate
– calls function specified with set_terminate

• default: abort

• set_terminate and set_unexpected
– prototypes in <exception>
– take pointers to functions (i.e., function name)

• function must return void and take no arguments
– returns pointer to last function called by terminate or
unexpected

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

13.11 Stack Unwinding

• function-call stack unwound when exception
thrown and not caught in a particular scope
– tries to catch exception in next outer try/catch block
– function in which exception was not caught terminates

• local variables destroyed
• control returns to place where function was called

– if control returns to a try block, attempt made to catch
exception

• otherwise, further unwinds stack
– if exception not caught, terminate called

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

13.12 Constructors, Destructors and
Exception Handling

• What to do with an error in a constructor?
– A constructor cannot return a value - how do we let the outside

world know of an error?
• keep defective object and hope someone tests it
• set some variable outside constructor

– a thrown exception can tell outside world about a failed constructor

• Thrown exceptions in destructors
– destructors called for all completed base-class objects and member

objects before exception thrown
– if the destructor that is originally called due to stack unwinding

ends up throwing an exception, terminate called

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

13.12 Constructors, Destructors and
Exception Handling (II)

• resource leak
– exception comes before code that releases a resource

• catch exceptions from destructors
– enclose code that calls them in try block followed by appropriate
catch block

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

13.13 Exceptions and Inheritance

• exception classes can be derived from base classes

• If catch can get a pointer/reference to a base
class, it can also catch pointers/references to
derived classes

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

13.14 Processing new Failures

• If new could not allocate memory
– old method - use assert function

• if new returns 0, abort
• does not allow program to recover

– modern method (header <new>)
• new throws bad_alloc exception

– method used depends on compiler
– on some compilers: use new(nothrow) instead of new to have
new return 0 when it fails

• function set_new_handler(functionName) - sets which
function is called when new fails.

• function can return no value and take no arguments
• new will not throw bad_alloc

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

13.14 Processing new Failures (II)

• new
– loop that tries to acquire memory

• a new handler function should either:
– Make more memory available by deleting other dynamically

allocated memory and return to the loop in operator new
– Throw an exception of type bad_alloc
– Call function abort or exit (header <cstdlib>) to terminate

the program

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

Outline

1. Load headers

1.1 Function definition

1.2 Initialize large
arrays

2. Use all available
memory

3. Output

1 // Fig. 13.5: fig13_05.cpp

2 // Demonstrating new throwing bad_alloc

3 // when memory is not allocated

4 #include <iostream>

5

6 using std::cout;

7 using std::endl;

8

9 #include <new>

10

11 using std::bad_alloc;

12

13 int main()

14 {

15 double *ptr[50];

16

17 try {

18 for (int i = 0; i < 50; i++) {

19 ptr[i] = new double[5000000];

20 cout << "Allocated 5000000 doubles in ptr["

21 << i << "]\n";

22 }

23 }

24 catch (bad_alloc exception) {

25 cout << "Exception occurred: "

26 << exception.what() << endl;

27 }

28

29 return 0;

30 }

Create large arrays until the
computer runs out of
memory

catch the bad_alloc exception
thrown by new when it fails to
allocate memory. Call member
function what to print what the
exception was.

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

Outline

Program Output

Allocated 5000000 doubles in ptr[0]
Allocated 5000000 doubles in ptr[1]
Allocated 5000000 doubles in ptr[2]
Allocated 5000000 doubles in ptr[3]
Exception occurred: Allocation Failure

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

Outline

1. Load headers

1.1 Function definition

1.2 Initialize large
arrays

2. Use all available
memory

3. Output

1 // Fig. 13.6: fig13_06.cpp
2 // Demonstrating set_new_handler
3 #include <iostream>
4
5 using std::cout;
6 using std::cerr;
7
8 #include <new>
9 #include <cstdlib>
10
11 using std::set_new_handler;
12
13 void customNewHandler()
14 {
15 cerr << "customNewHandler was called";
16 abort();
17 }
18
19 int main()
20 {
21 double *ptr[50];
22 set_new_handler(customNewHandler);
23
24 for (int i = 0; i < 50; i++) {
25 ptr[i] = new double[5000000];
26
27 cout << "Allocated 5000000 doubles in ptr["
28 << i << "]\n";
29 }
30
31 return 0;
32 }

Custom function to be called
instead of the default.

Set customNewHandler to be
called when new fails.

Create large arrays until the
computer runs out of
memory

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

Outline

Program Output

Allocated 5000000 doubles in ptr[0]
Allocated 5000000 doubles in ptr[1]
Allocated 5000000 doubles in ptr[2]
Allocated 5000000 doubles in ptr[3]
customNewHandler was called

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

13.15 Class auto_ptr and Dynamic
Memory Allocation

• pointers to dynamic memory
– memory leak can occur if exceptions happens before delete

command
– use class template auto_ptr (header <memory>) to resolve

this
– auto_ptr objects act just like pointers

• automatically deletes what it points to when it is destroyed (leaves
scope)

• can use * and -> like normal pointers

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

Outline

1. Load header

1.1 Class definition

1.2 Function
definitions

1 // Fig. 13.7: fig13_07.cpp

2 // Demonstrating auto_ptr

3 #include <iostream>

4

5 using std::cout;

6 using std::endl;

7

8 #include <memory>

9

10 using std::auto_ptr;

11

12 class Integer {

13 public:

14 Integer(int i = 0) : value(i)

15 { cout << "Constructor for Integer " << value << endl; }

16 ~Integer()

17 { cout << "Destructor for Integer " << value << endl; }

18 void setInteger(int i) { value = i; }

19 int getInteger() const { return value; }

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

Outline

1.3 Initialize auto_ptr
pointer

2. Manipulate values

3. Output

Program Output

20 private:

21 int value;

22 };

23

24 int main()

25 {

26 cout << "Creating an auto_ptr object that points "

27 << "to an Integer\n";

28

29 auto_ptr< Integer > ptrToInteger(new Integer(7));

30

31 cout << "Using the auto_ptr to manipulate the Integer\n";

32 ptrToInteger->setInteger(99);

33 cout << "Integer after setInteger: "

34 << (*ptrToInteger).getInteger()

35 << "\nTerminating program" << endl;

36

37 return 0;

38 }

Creating an auto_ptr object that points to an Integer
Constructor for Integer 7
Using the auto_ptr to manipulate the Integer
Integer after setInteger: 99
Terminating program
Destructor for Integer 99

A memory leak is avoided because
pointers of type auto_ptr
automatically destroy the object they
point to when they leave scope.

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

13.16 Standard Library Exception
Hierarchy

• exceptions fall into categories
– hierarchy of exception classes
– base class exception (header <exception>)

• function what() issues appropriate error message
– derived classes: runtime_error and logic_error (header
<stdexcept>)

• class logic_error
– errors in program logic, can be prevented by writing proper code
– Derived classes:

• invalid_argument - invalid argument passed to function
• length_error - length larger than maximum size allowed was

used
• out_of_range - out of range subscript

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

13.16 Standard Library Exception
Hierarchy (II)

• class runtime_error
– errors detected at execution time
– Derived classes:

• overflow_error - arithmetic overflow
• underflow_error - arithmetic underflow

• other classes derived from exception
– exceptions thrown by C++ language features

• new - bad_alloc
• dynamic_cast - bad_cast (Chapter 21)
• typeid - bad_typeid (Chapter 21)

– put std::bad_exception in throw list
• unexpected()will throw bad_exception instead of calling

function set by set_unexpected

