OBJECT ORIENTED
PROGRAMMING USING C++

Access Modifiers

Control which classes use a feature

Only class-level variables may be controlled by access
modifiers

Modifiers

1. public

2. protected

3. private

Non-inner classes can only be public

Friendly

Features with no access modifier default to friendly

Friendly features are accessible to any class in the same
package
Classes outside the package may not access these features

Friendly classes may be subclassed but their
variables/methods are not accessible by the subclass

Modifiers

e public
— Can be used in any Java program without restriction
e private

— may only be used by the instance of the class that
declares the variable or method

e protected

— only variables, methods, and inner classes can be
declared protected

— available to all classes in the same package

— available to all subclasses(even those in different
packages)

Overriding Methods

« Methods may not be overwritten to be more private

R R e N>

Final Modifier

» Final features may not be overwritten
» A final class may not be subclassed

» A final variable cannot be changed once it has been
assigned a value

Final Modifier Example

class Walrus {

int weight;

Walrus(int w) { weight = w };
+

class Tester {
final Walrus wl = new Walrus(1500);
void test() {
wl = new Walrus(1400); // Illlegal
wl.weight = 1800; // Legal

}
}

Abstract Modifier

An abstract class cannot be instantiated
This is a way to defer implementation to subclasses

An class with one more methods declared abstract cannot
be instantiated

A class that Is declared to implement an interface but does
not implement all the methods of that interface must be
abstract

Similar to virtual in C++

Abstract Example

abstract class Stack {
protected 1nt count = O;

public abstract void push(Object o);
public abstract void pop();

public abstract Object top();

public abstract boolean i1srFull();

public boolean isEmpty() {
return count==0;

}
}

Static Modifier

» Associated with a class, not a particular instance of a class
public class StaticTest {
static Int x = 0;
StaticTest() {
X++;

}
}

No matter how many instances of StaticTest we have the ‘X’
variable is the same for all

Accessing Static Variables

StaticTest st = new StaticTest();
st.X = 69;

OR
StaticTest.x = 69

More about Static

Static methods cannot use non-static features of their class
They can access the class’s static data

Since static methods are not associated with an instance of
a class there i1s no this variable

Static Initializers

public class Demo {

Int X = 5;
static {

X = 69;
}

public static void main(String[]) {
System.out.printIn(“X = “ + x);

}
}

What is the value printed?

Native modifier

Can only refer to methods

Indicates that the body of the method is to be found
elsewhere

Namely in a file in another language

Call to native method is the same as If it was implemented
In Java

Transient modifier

e Only applies to variables
e Transient variables will not be serialized
e Transient variables cannot be final or static

Synchronized modifier

« Used to control critical code in multi-threaded programs
* Covered in chapter 7

Volatile modifier

* Not on exam
e Used in multiprocessor environments
« Applies only to variables

