
OBJECT ORIENTED
PROGRAMMING USING C++

Access Modifiers

• Control which classes use a feature
• Only class-level variables may be controlled by access

modifiers
• Modifiers

1. public
2. protected
3. private

• Non-inner classes can only be public

Friendly

• Features with no access modifier default to friendly
• Friendly features are accessible to any class in the same

package
• Classes outside the package may not access these features
• Friendly classes may be subclassed but their

variables/methods are not accessible by the subclass

Modifiers

• public
– Can be used in any Java program without restriction

• private
– may only be used by the instance of the class that

declares the variable or method
• protected

– only variables, methods, and inner classes can be
declared protected

– available to all classes in the same package
– available to all subclasses(even those in different

packages)

Overriding Methods

• Methods may not be overwritten to be more private

Private Friendly Protected Public

Final Modifier

• Final features may not be overwritten
• A final class may not be subclassed
• A final variable cannot be changed once it has been

assigned a value

Final Modifier Example

class Walrus {

int weight;

Walrus(int w) { weight = w };

}

class Tester {

final Walrus w1 = new Walrus(1500);

void test() {

w1 = new Walrus(1400); // Illegal

w1.weight = 1800; // Legal

}

}

Abstract Modifier

• An abstract class cannot be instantiated
• This is a way to defer implementation to subclasses
• An class with one more methods declared abstract cannot

be instantiated
• A class that is declared to implement an interface but does

not implement all the methods of that interface must be
abstract

• Similar to virtual in C++

Abstract Example
abstract class Stack {

protected int count = 0;

public abstract void push(Object o);
public abstract void pop();
public abstract Object top();
public abstract boolean isFull();

public boolean isEmpty() {
return count==0;

}
}

Static Modifier

• Associated with a class, not a particular instance of a class
public class StaticTest {

static int x = 0;

StaticTest() {

x++;

}

}

No matter how many instances of StaticTest we have the ‘x’
variable is the same for all

Accessing Static Variables

StaticTest st = new StaticTest();

st.x = 69;

OR
StaticTest.x = 69

More about Static

• Static methods cannot use non-static features of their class
• They can access the class’s static data
• Since static methods are not associated with an instance of

a class there is no this variable

Static Initializers

public class Demo {

int x = 5;

static {

x = 69;

}

public static void main(String[]) {

System.out.println(‘X = ‘ + x);

}

}

What is the value printed?

Native modifier

• Can only refer to methods
• Indicates that the body of the method is to be found

elsewhere
• Namely in a file in another language
• Call to native method is the same as if it was implemented

in Java

Transient modifier

• Only applies to variables
• Transient variables will not be serialized
• Transient variables cannot be final or static

Synchronized modifier

• Used to control critical code in multi-threaded programs
• Covered in chapter 7

Volatile modifier

• Not on exam
• Used in multiprocessor environments
• Applies only to variables

