
OBJECT ORIENTED
PROGRAMMING USING C++

Chapter 9 - Classes with Class Members

 Class Variables
 Class Methods
 How to Access Class Members
 When to Use Class Members
 Class Constants
 Example Program Using Class Members

1

Class Variables

 Based on what you've learned so far, when you're working on an
object-oriented program, you should envision separate objects,
each with their own set of data and behaviors (instance variables
and instance methods, respectively).

 That's a valid picture, but you should be aware that in addition
to data and behaviors that are specific to individual objects, you
can also have data and behaviors that relate to an entire class.
Since they relate to an entire class, such data and behaviors are
referred to as class variables and class methods, respectively.

 For a particular class, each of the class's objects has its own
copy of the class's instance variables.

 For a particular class, each of the class's objects shares a single
copy of the class's class variables.

2

Class Variables

 If you'd like a variable to be shared throughout its
class, make it a class variable by using the static
modifier in its declaration:
<private or public> static <type> <variable-name>;

 Example:
public class Mouse

{

private static int mouseCount;

private static double averageLifeSpan;

...

 Class variables are declared at the top of the class,
above all the methods.

3

Class Variables

 Class variables use the same default values as
instance variables:
 integer types get 0
 floating point types get 0.0
 boolean types get false
 reference types get null

 What are the default values for the class variables in
this code fragment?
public class Mouse
{
private static int mouseCount;
private static double averageLifeSpan;
private static String researcher;
private static int simulationDuration = 730;
...

Initializations
are allowed.

4

Scope

 You can access a class variable from anywhere
within its class; i.e., you can access class variables
from instance methods as well as from class
methods.

 That contrasts with instance variables, which you
can access only from instance methods.

 Thus, class variables have broader scope than
instance variables. Local variables, on the other
hand, have narrower scope than instance variables.
They can be accessed only within one particular
method.

5

Scope

 Here is the scope continuum:

 Narrower scope equates to more encapsulation, and
encapsulation means you are less vulnerable to inappropriate
changes.

 Class variables, with their broad scope and lack of
encapsulation, can be accessed and updated from many
different places, and that makes programs hard to understand
and debug. Having broader scope is necessary at times, but in
general you should try to avoid broader scope.

 Thus, you should prefer local variables over instance variables
and instance variables over class variables.

local variables instance variables class variables

narrowest scope broadest scope

6

Class Methods

 If you have a method that accesses class variables and
not instance variables, then you should declare the
method to be a class method. To do so, add static to
the method's heading like this:
<private-or-public> static <return-type> <method-name>(<parameters>)

 Example:
public class Mouse
{

private static int mouseCount;
private static double averageLifeSpan;

public static void printMouseCount()
{
System.out.println("Total mice = " +

Mouse.mouseCount);
}

}
To access a class variable,
prefix it with <class-name> dot.

7

How to Access Class Members

 Normally, to access a class member (a class variable or a class
method), prefix it with <class-name> dot.

 Shortcut syntax for a class member:
 In accessing a class member, you may omit the <class-name> dot

prefix if the class member is in the same class as where you're
trying to access it from. For example:

public class Mouse
{

private static int mouseCount;
private static void printMouseCount()
{

System.out.println("Total mice = " + Mouse.mouseCount);
}
public static void main(String[] args)
{

Mouse.printMouseCount();
}

} // end Mouse class
OK to access mouseCount
without <class-name> dot.

OK to access printMouseCount
without <class-name> dot.

8

When to Use Class Methods

 You should make a method a class method:
 If you have a method that uses class variables and/or calls

class methods, then it's a good candidate for being a class
method. Warning: If in addition to accessing class members,
the method also accesses instance members, then the
method must be an instance method, not a class method.

 If you might need to call a method even when there are no
objects from the method's class, then you should make it a
class method.

 The main method has to be a class method. If a main
method uses helper methods that don't involve instance
members, then the helper methods should be class methods
as well.

9

Class Constants

 Sometimes, you'll want a class variable to be fixed/constant. That
type of "variable" is called a class constant.

 To make a class constant, declare a variable with the static and
final modifiers like this:

<private or public> static final <type> <variable-name> = <initial value>;

 Note that class constants should be assigned as part of an
initialization statement. If you attempt to assign a value to a class
constant later on, that generates a compilation error.

 As with most variables, class constants usually use the private
modifier. However, if the constant is so important that more than
one class needs to use it, then you should use the public
modifier.

10

Class Constants

 In the below Human class, we make NORMAL_TEMP a class constant
(with the static and final modifiers) because all Human objects
have the same normal temperature of 98.6° Fahrenheit.
public class Human
{

private static final double NORMAL_TEMP = 98.6;
...
public boolean isHealthy()
{

return Math.abs(currentTemp - NORMAL_TEMP) < 1;
} // end isHealthy

public void diagnose()
{

if ((currentTemp - NORMAL_TEMP) > 5)
{

System.out.println("Go to the emergency room now!");
...

} // end class Human

class constant

11

Class Constants

 Prior to this chapter, you used named constants that were
declared locally within a method. For example:
public void calculateSignalDelay(double cableDistance)
{
final double SPEED_OF_LIGHT = 299792458.0;
double propagationDelay; // time for electron to travel

// length of cable
...
propagationDelay = cableDistance / SPEED_OF_LIGHT;
...

}

 So when should you use a local variable named constant and
when should you use a class constant?
 Use a local variable named constant if the constant is only needed

within one method.
 Use a class constant if the constant is a property of the collection

of all the objects in the class or of the class in general.

12

Example Program Using Class Members

/***
* PennyJar.java
* Dean & Dean
*
* This class counts pennies for individual penny jars and for
* all penny jars combined.
***/

public class PennyJar
{
public static final int GOAL = 10000;
private static int allPennies = 0;
private int pennies = 0;

//**

public int getPennies()
{
return this.pennies;

}

//**

public void addPenny()
{
System.out.println("Clink!");
this.pennies++;
PennyJar.allPennies++;

if (PennyJar.allPennies >= PennyJar.GOAL)
{
System.out.println("Time to spend!");

}
} // end addPenny

13

Example Program Using Class Members

//**

public static int getAllPennies()
{

return PennyJar.allPennies;
}

} // end class PennyJar

/***
* PennyJarDriver.java
* Dean & Dean
*
* This class drives the PennyJar class.
***/

public class PennyJarDriver
{

public static void main(String[] args)
{

PennyJar pennyJar1 = new PennyJar();
PennyJar pennyJar2 = new PennyJar();

pennyJar1.addPenny();
pennyJar1.addPenny();
pennyJar2.addPenny();
System.out.println(pennyJar1.getPennies());
System.out.println(PennyJar.getAllPennies());

} // end main
} // end class PennyJarDriver

14

