\iint_{0}^{0} NETWORK THEORY

LECTURE 9

SECTION-D :NETWORK SYNTHESIS

INVERTING AMPLIFIER

(1) Kirchhoff node equation at V_{+} yields, $V_{+}=0$
(2) Kirchhoff $V_{\text {no }}$ pe equation at V

(3) Settifigg $V_{\text {in }} \forall_{+} \frac{-R_{f}}{R_{a}^{\text {- }}}$ yields

Notice: The closed-loop gain $V_{0} / V_{\text {in }}$ is dependent upon the ratio of two resistors, and is independent of the open-loop gain. This is caused by the use of feedback output voltage to subiraci firom the inpui voilage.

MULTIPLE INPUTS

(1) Kirchhoff node equation at V_{+} yields, $V_{+}=0$

(3) Setting $_{o} V R_{f}\left(\frac{V_{a} V_{+}}{R_{a}}+\frac{\mathrm{Y}|(\mid)| d s}{R_{b}}+\frac{V_{c}}{R_{c}}\right)=-R_{f} \sum_{j=a}^{c} \frac{V_{j}}{R_{j}}$

INVERTING INTEGRATOR

Now replace resistors R_{a} and R_{f} by complex components Z_{a} and Z_{f}, respectively, therefore Supposing $V_{o}=\frac{-Z_{f}}{Z_{a}} V_{i n}$

(ii) The input $Z_{f}=\frac{1}{c j \omega \text { © onent is a resistor } R, Z_{a}=R}$

Therefore, the closed-loop gain $\left(V_{0} / V_{\text {in }}\right)$ become:

$$
v_{o}(t)=\frac{-1}{R C} \int v_{i}(t) d t
$$

where

$$
v_{i}(t)_{n}=V_{i} e^{j \omega t}
$$

What happens if $v_{i}(t)=V_{\mathrm{a}} V_{i}^{j \omega t}=1 / j \omega C$ whereas, $Z_{\mathrm{f}}=R$? Inverting differentiator

OP-AMP INTEGRATOR

Example:

(a) Determine the rate of change of the output voltage.

$$
\underline{I}^{+} V_{\text {o(max) }}=10 \mathbf{V}
$$

Solution:
(a) Rate of change of the output voltage

$$
\begin{aligned}
& \frac{\Delta V_{o}}{\Delta t}=-\frac{V_{i}}{R C}=\frac{5 \mathbf{V}}{(10 \mathbf{k} \Omega)(0.01 \mu \mathbf{F})} \\
= & -50 \mathbf{m V} / \mu \mathbf{s}
\end{aligned}
$$

(b) In $100 \mu \mathrm{~s}$, the voltage decrease

$$
\Delta V_{o}=(-50 \mathbf{m V} / \mu \mathbf{s})(100 \boldsymbol{\mu} \mathbf{s})=-5 \mathbf{V}
$$

OP-AMP DIFFERENTIATOR

NON-IDEAL CASE (INVERTING AMPLIFIER)

3 categories are considering

- Close-Loop Voltage Gain

I Input impedance
\square Output impedance

CLOSE-LOOP GAIN

Applied KCL at V - terminal,

$$
\frac{V_{i n}-V_{\pi}}{R_{a}}+\frac{-V_{\pi}}{R_{\pi}}+\frac{V_{o}-V_{\pi}}{R_{f}}=0
$$

By using the open loop gain,

$$
V_{o}=-A V_{\pi}
$$

$$
\Rightarrow \frac{V_{i n}}{R_{a}}+\frac{V_{o}}{A R_{a}}+\frac{V_{o}}{A R_{\pi}}+\frac{V_{o}}{R_{f}}+\frac{V_{o}}{A R_{f}}=0
$$

$$
\Rightarrow \frac{V_{i n}}{R_{a}}=-V_{o} \frac{R_{\pi} R_{f}+R_{a} R_{f}+R_{a} R_{\pi}+A R_{a} R_{\pi}}{A R_{a} R_{\pi} R_{f}}
$$

The Close-Loop Gain, A_{v}

$$
A_{v}=\frac{V_{o}}{V_{i n}}=\frac{-A R_{\pi} R_{f}}{R_{\pi} R_{f}+R_{a} R_{f}+R_{a} R_{\pi}+A R_{a} R_{\pi}}
$$

CLOSE-LOOP GAIN

When the open loop gain is very large, the above equation become,

$$
A_{v} \sim \frac{-R_{f}}{R_{a}}
$$

Note : The close-loop gain now reduce to the same form as an ideal case

