\iint_{0}^{0} NETWORK THEORY

LECTURE 4

SECTION-D:TYPES OF FILTERS AND THEIR CHARACTERISTICS

ROPERTY 3. L-C IMMITTANCE FUNCTION

- 3.The poles and zeros interlace on the $j \omega$ axis.

Highest power: $2 n$-> next highest power must be $2 n-2$
They cannot be missing term. Unless?
if $b_{5} s^{5}+b_{1} s=0 \quad \rightarrow \mathbf{s}=\mathbf{0}, \quad s_{k}=\left(\frac{b_{1}}{b_{5}}\right)^{1 / 4} e^{i(2 k-1) \pi / 4}$

We can write a general L-C impedance or admittance as

$$
\begin{aligned}
& Z(s)=\frac{K\left(s^{2}+\omega_{1}^{2}\right)\left(s^{2}+\omega_{3}^{2}\right) \ldots\left(s^{2}+\omega_{i}^{2}\right) \ldots}{s\left(s^{2}+\omega_{2}{ }^{2}\right)\left(s^{2}+\omega_{4}{ }^{2}\right) \ldots\left(s^{2}+\omega_{j}^{2}\right) \ldots} \\
& Z(s)=\frac{K_{0}}{s}+\frac{2 K_{2} s}{s^{2}+\omega_{2}{ }^{2}}+\frac{2 K_{4} s}{s^{2}+\omega_{4}{ }^{2}}+\ldots+K_{\infty} s
\end{aligned}
$$

Since these poles are all on the jw axis, the residues must be real and positive in order for $Z(s)$ to be positive real .

$$
\text { S=jw } \rightarrow \quad Z(j w)=j X(w)(\text { no real part })
$$

$$
\frac{d X(\omega)}{d \omega}=\frac{K_{0}}{\omega^{2}}+K_{\infty}+\frac{K_{2}\left(\omega^{2}+\omega_{2}^{2}\right)}{\left(\omega_{2}^{2}+\omega^{2}\right)}+\ldots
$$

Since all the residues Ki are positive, it is eay $\quad d X(\omega)$ to see that for an L-C function

$$
\frac{d X(\omega)}{d \omega} \geq 0
$$

$$
\text { Ex) } Z(s)=\frac{K s\left(s^{2}+\omega_{3}^{2}\right)}{\left(s^{2}+\omega_{2}^{2}\right)\left(s^{2}+\omega_{4}^{2}\right)} j X(\omega)=+j \frac{K \omega\left(-\omega^{2}+\omega_{3}{ }^{2}\right)}{\left(-\omega^{2}+\omega_{2}{ }^{2}\right)\left(-\omega^{2}+\omega_{4}{ }^{2}\right)}
$$

PROPERTIES 4 AND 5. L-C IMMITTANCE FUNCTION

- The highest powers of the numerator and denominator must differ by unity; the lowest powers also differ by unity.
- There must be either a zero or a pole at the origin and infinity.

UMMARY OF PROPERTIES

1. $Z_{L C}(s)$ or $Y_{L C}(\mathrm{~s})$ is the ratio of odd to even or even to odd polynomials.
2. The poles and zeros are simple and lie on the jw axis
3. The poles and zeros interlace on the jw axis.
4. The highest powers of the numerator and denominator must differ by unity; the lowest powers also differ by unity.
5. There must be either a zero or a pole at the origin and infinity.

XAMPLES

$$
\begin{aligned}
Z(s) & =\frac{K s\left(s^{2}+4\right)}{\left(s^{2}+1\right)\left(s^{2}+3\right)} \quad Z(s)=\frac{s^{5}+4 s^{3}+5 s}{3 s^{4}+6 s^{2}} \\
Z(s) & =\frac{K\left(s^{2}+1\right)\left(s^{2}+9\right)}{\left(s^{2}+2\right)\left(s^{2}+10\right)} \\
Z(s) & =\frac{2\left(s^{2}+1\right)\left(s^{2}+9\right)}{s\left(s^{2}+4\right)}
\end{aligned}
$$

