\iint_{0}^{0} NETWORK THEORY

LECTURE 3

SECTION-D:TYPES OF FILTERS AND THEIR CHARACTERISTICS

Example - Passive Second Order Filter Function

$$
T(s)=\frac{\omega_{o}^{2}}{s^{2}+\frac{\omega_{o}}{Q} s+\omega_{o}^{2}}=\left\{\begin{array}{l}
\rightarrow 0 \text { as } s \rightarrow \infty \\
\rightarrow Q \text { as } s=j \omega_{o} \\
\rightarrow 1 \text { as } s \rightarrow 0
\end{array}\right.
$$

T(dB)

* Low pass filter
$T(s)=\frac{V_{o}(s)}{V_{i}(s)}=\frac{Z_{C} \| R}{Z_{C} \| R+Z_{L}}$
where $Z_{C} \| R=\frac{1}{\frac{1}{Z_{C}}+\frac{1}{R}}=\frac{1}{s C+\frac{1}{R}}=\frac{R}{1+s R C}$ so
$T(s)=\frac{Z_{C} \| R}{Z_{C} \| R+Z_{L}}=\frac{\left(\frac{R}{1+s R C}\right)}{s L+\frac{R}{1+s R C}}=\frac{1}{\left(\frac{1+s R C}{R}\right)\left(s L+\frac{R}{1+s R C}\right)}$
$=\frac{1}{1+s \frac{L}{R}+s^{2} L C}=\frac{\left(\frac{1}{L C}\right)}{s^{2}+s\left(\frac{1}{R C}\right)+\frac{1}{L C}}=\frac{\omega_{o}^{2}}{s^{2}+\frac{\omega_{o}}{Q} s+\omega_{o}^{2}}$
where $\omega_{o}=\frac{1}{\sqrt{L C}}$ and $Q=R C \omega_{o}=R \sqrt{\frac{C}{L}}$
This has the form of a second order filter with
$\mathrm{a}_{2}=0, \mathrm{a}_{1}=0 \quad a_{0}=\omega_{0}^{2}$
General form of \quad for function

$$
T(s)=\frac{V_{o}(s)}{V_{i}(s)}=\frac{a_{2} s^{2}+a_{1} s+a_{o}}{s^{2}+\frac{\omega_{0}}{Q} s+\omega_{0}^{2}}
$$

Example - Passive Second Order Filter Function

T(dB)

* Bandpass filter
$T(s)=\frac{V_{o}(s)}{V_{i}(s)}=\frac{Z_{C} \| Z_{L}}{Z_{C} \| Z_{L}+R}$
where $Z_{C} \| Z_{L}=\frac{1}{\frac{1}{Z_{C}}+\frac{1}{Z_{L}}}=\frac{1}{s C+\frac{1}{s L}}=\frac{s L}{1+s^{2} L C}$ so
$T(s)=\frac{Z_{C} \| Z_{L}}{Z_{C} \| Z_{L}+R}=\frac{\left(\frac{s L}{1+s^{2} L C}\right)}{R+\frac{s L}{1+s^{2} L C}}=\frac{s L}{s L+R\left(1+s^{2} L C\right)}$
$=\frac{s \frac{1}{R C}}{s^{2}+s \frac{1}{R C}+\frac{1}{L C}}=\frac{\frac{1}{R C} s}{s^{2}+\frac{\omega_{o}}{Q} s+\omega_{o}^{2}}$
where $\omega_{o}=\frac{1}{\sqrt{L C}}$ and $Q=R C \omega_{o}=R \sqrt{\frac{C}{L}}$
This has the form of a second order filter with
$\mathrm{a}_{2}=0, \mathrm{a}_{1}=\frac{1}{R C}=\frac{\omega_{o}}{Q} \quad a_{0}=0$
General form of $\begin{aligned} & \text { function }\end{aligned}$

$$
T(s)=\frac{V_{o}(s)}{V_{i}(s)}=\frac{a_{2} s^{2}+a_{1} s+a_{o}}{s^{2}+\frac{\omega_{0}}{Q} s+\omega_{0}^{2}}
$$

Low Pass Butterworth Filter Design

$$
T(s)=\frac{V_{o}}{V_{i}}=\frac{1 / R^{2} C^{2}}{s^{2}+s \frac{2}{R C}+\frac{1}{R^{2} C^{2}}}=\left\{\begin{array}{c}
\rightarrow-j / 2 \text { as } s \rightarrow j \omega_{o} \\
\rightarrow 0 \text { as } s \rightarrow \infty
\end{array}\right.
$$

* Given the filter specification $\left({ }_{0}\right)$, we can determine the \mathbf{R} and \mathbf{C}.
* One specification, two parameters - \mathbf{R} and \mathbf{C}
* Pick a convenient value, say $\mathrm{C}=5 \mathbf{n F}$.
* Calculate R from C and ω_{0}.

$$
\omega_{o}=\frac{1}{R C} \quad \text { so } \quad R=\frac{1}{C \omega_{o}}
$$

Example: Given $\omega_{0}=2 \pi(2 \mathrm{MHz})=1.26 \times 10^{7} \mathrm{rad} / \mathrm{sec}$ Choose $C=5 n F$, then
$R=\frac{1}{C \omega_{o}}=\frac{1}{\left(5 \times 10^{-9} \mathrm{~F}\right)\left(1.26 \times 10^{7} \mathrm{rad} / \mathrm{sec}\right)}=16 \Omega$

ROPERTY 1. L-C IMMITTANCE FUNCTION

- 1. $\mathrm{Z}_{\mathrm{LC}}(\mathrm{s})$ or $\mathrm{Y}_{\mathrm{LC}}(\mathrm{s})$ is the ratio of odd to even or even to odd polynomials.
- Consider the $\frac{\left.M_{11}(s) \text { titi } N_{\mathrm{E}}(s) s\right)}{M_{2}(s)+N_{2}(s)}$ of passive one-port network.
(M is even N is odd)

As we know, when the input current is I, the average power dissipated by one-port nelwork is zeroj $\operatorname{Re}(j \omega)]|I|^{2}$

Average Power=
$=0$

$$
\begin{gathered}
E v Z(s)=\frac{M_{1}(s) M_{2}(s)-N_{1}(s) N_{2}(s)}{M_{2}(s)^{2}+N_{2}(s)^{2}}=0 \\
M_{1}(j \omega) M_{2}(j \omega)-N_{1}(j \omega) N_{2}(j \omega)=0 \\
M_{1}=0=N_{2} \quad \text { OR } \quad M_{2}=0=N_{1} \\
Z(s)=\frac{M_{1}}{N_{2}}, Z(s)=\frac{N_{1}}{M_{2}}
\end{gathered}
$$

$\mathrm{Z}(\mathrm{s})$ or $\mathrm{Y}(\mathrm{s})$ is the ratio of even to odd or odd to even!!

ROPERTY 2. L-C IMMITTANCE FUNCTION

- 2.The poles and zeros are simple and lie on the $j \omega$ axis.

$$
Z(s)=\frac{M_{1}}{N_{2}}, Z(s)=\frac{N_{1}}{M_{2}}
$$

- Since both M and N are Hurwitz, they have only imaginary roots, and it follows that the poles and zeros of $\mathrm{Z}(\mathrm{s})$ or $\mathrm{Y}(\mathrm{s})$ are on the imaginary axis.
- Consider the example

$$
Z(s)=\frac{a_{4} s^{4}+a_{2} s^{2}+a_{0}}{b_{5} s^{5}+b_{3} s^{3}+b_{1} s}
$$

$Z(s)=\frac{a_{4} s^{4}+a_{2} s^{2}+a_{0}}{b_{5} s^{5}+b_{3} s^{3}+b_{1} s} \quad \begin{aligned} & \text { In order for the impedance to be positive } \\ & \text { real } \rightarrow \text { the coefficients must be real and } \\ & \text { positive. }\end{aligned}$
Impedance function cannot have multiple poles or zeros on the $j \omega$ axis.

The highest powers of the numerator and the denominator polynomials can differ by, at most, unity.

Ex) highest order of the numerator: $2 n->$ highest order of the denominator can either be $2 n-1$ (simple pole at $s=\infty$) or the order can be $2 n+1$ (simple zero at $s=\infty$).

