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LECTURE 3
SECTION-D:TYPES OF FILTERS AND THEIR CHARACTERISTICSD:TYPES OF FILTERS AND THEIR CHARACTERISTICS



Example - Passive  Second  Order  Filter  Function
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* Low  pass  filter

Passive  Second  Order  Filter  Function
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General  form  of  transfer  function
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Example - Passive  Second  Order  Filter  Function
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Passive  Second  Order  Filter  Function
* Bandpass  filter
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General  form  of  transfer  function



Low  Pass  Butterworth  Filter  Design
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*  Given  the  filter  specification (0),  we  can  determine the  R and C.
*  One  specification,  two  parameters – R and C      
*  Pick  a  convenient  value,  say  C = 5 nF.
*  Calculate  R  from  C  and ωo. 

Hurwitz Polynomials
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Low  Pass  Butterworth  Filter  Design





sas
jsasj

sas

o

0
2/

01


T(dB)

0

0 dB
Q(dB)

o
1

),  we  can  determine the  R and C.
R and C      

NOTE  
40 dB/dec

 







 16
sec)/1026.1)(105(

11
   ,5    

sec/1026.122Given    :

79

7
0

radxFxC
R

thennFCChoose
radxMHzExample

o



Hurwitz Polynomials



PROPERTY 1. L-C IMMITTANCE FUNCTION

• 1. ZLC (s)  or YLC (s) is the ratio of odd to even or even to odd

polynomials.

• Consider the impedance Z(s)  of passive one

As we know, when the input current is 
dissipated by one-port network  is zero:
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C IMMITTANCE FUNCTION

(s) is the ratio of odd to even or even to odd

Consider the impedance Z(s)  of passive one-port network.

(M is even N is odd)

As we know, when the input current is I, the average power 
port network  is zero:
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Z(s) or Y(s) is the ratio of even to odd or odd to even!!
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Z(s) or Y(s) is the ratio of even to odd or odd to even!!



PROPERTY 2. L-C IMMITTANCE FUNCTION

• 2.The poles and zeros are simple and lie on the             
axis.

• Since both M and N are Hurwitz, they have only imaginary roots, 
and it follows that the poles and zeros of Z(s) or Y(s) are on the 
imaginary axis. 

• Consider the example
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C IMMITTANCE FUNCTION

2.The poles and zeros are simple and lie on the             

Since both M and N are Hurwitz, they have only imaginary roots, 
and it follows that the poles and zeros of Z(s) or Y(s) are on the 
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Ex) highest order of the numerator : 2n 
denominator can either be 2n-1 (simple pole at s=     ) or

the order can be 2n+1 (simple zero at s=      ).

Impedance function cannot have multiple poles or zeros

axis. 

In order for the impedance to be positive 
real 
positive.
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The highest powers of the numerator and the denominator 
polynomials can differ by, at most, unity.

Ex) highest order of the numerator : 2n -> highest order of the                          
1 (simple pole at s=     ) or

the order can be 2n+1 (simple zero at s=      ).

cannot have multiple poles or zeros on the

n order for the impedance to be positive 
 the coefficients must be real and 

positive.
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The highest powers of the numerator and the denominator 
polynomials can differ by, at most, unity.




