NETWORK THEORY

 \cap

0

LECTURE 1

SECTION-D:TYPES OF FILTERS AND THEIR CHARACTERISTICS

Active Filters

 \cap

Fig. 11.1 The filters studied in this chapter are linear circuits represented by the general two-port network shown. The filter transfer function $T(s) \equiv V_o(s)/V_i(s)$.

Transfer Function

$$T(s) = \frac{V_o(s)}{V_i(s)}$$

Magnitude can be expressed as: Gain function $G(\omega)$ for $|A(\omega)| > 1$

$$G(\omega) = 20\log|T(\omega)|$$
 in d

or

Attenuation function $A(\omega)$ for $|A(\omega)| < 1$ $A(\omega) = -20\log|T(\omega)|$ in dB

- * Based on use of amplifiers to achieve filter function
- * Frequently use op amps so filter may have some gain as well.
- * Alternative to LRC-based filters
- * Benefits
 - Provide improved characteristics
 - Smaller size and weight
 - Monolithic integration in IC
 - Implement without inductors
 - Lower cost
 - More reliable
 - Less power dissipation

Price

- Added complexity
- More design effort

3

Filter Types

Fig. 11.2 Ideal transmission characteristics of the four major filter types: (a) low-pass (LP), (b) high-pass (HP), (c) bandpass (BP), and (d) bandstop (BS).

Four major filter types:

*

- Low pass (blocks high frequencies)
- High pass (blocks low frequencies)
- Bandpass

 (blocks high and low frequencies except in narrow band)
- Bandstop

 (blocks frequencies in a narrow band)

Filter Specifications

Fig. 11.3 Specification of the transmission characteristics of a low-pass filter. The magnitude response of a filter that just meets specifications is also shown.

- * Specifications four parameters needed
 - Example low pass filter: A_{min}, A_{max}, Passband, Stopband
 - Parameters specify the basic characteristics of filter, e.g. low pass filtering
 - Specify limitations to its ability to filter, e.g. nonuniform transmission in passband, incomplete blocking of frequencies in stopband

Fig. 11.4 Transmission specifications for a bandpass filter. The magnitude response of a filter that just meets specifications is also shown. Note that this particular filter has a monotonically decreasing transmission in the passband on both sides of the peak frequency.

Filter Transfer Function

* Any filter transfer function T(s) can be written as a ratio of two polynomials in "s"

$$T(s) = \frac{a_M s^M + a_{M-1} s^{M-1} + \dots + a_o}{s^N + b_{N-1} s^{N-1} + \dots + b_o}$$

- * Where M < N and N is called the "order" of the filter function
 - Higher N means better filter performance
 - Higher N also means more complex circuit implementation
- * Filter transfer function T(s) can be rewritten as

 \cap

$$T(s) = \frac{a_M (s - z_1)(s - z_2)...(s - z_M)}{(s - p_1)(s - p_2)...(s - p_N)}$$

- where z's are "zeros" and p's are "poles" of T(s)
- where poles and zeroes can be real or complex
- * Form of transfer function is similar to low frequency function $F_L(s)$ seen previously for amplifiers where $A(s) = A_M F_L(s) F_H(s)$

First Order Filter Functions

* First order filter functions are of the general form

 \bigcirc

$$T(s) = \frac{a_1 s + a_o}{s + \omega_0} = \frac{a_1 \left(s + \frac{a_o}{a_1}\right)}{s + \omega_0}$$

First Order Filter Functions

* First order filter functions are of the form

 \bigcirc

