\iint_{0}^{0} NETWORK THEORY

LECTURE 3

SECTION B

TOPIC COVERED :TWO PORT NETWORK

If a network does not contain non-reciprocal devices or materials* (i.e. ferrites, or active devices), then the network is "reciprocal."

$$
\Rightarrow Z_{i j}=Z_{j i} \quad\left(Y_{i j}=Y_{j i}\right)
$$

$$
\Rightarrow[Z] \text { and }[Y] \text { are symmetric }
$$

* A reciprocal material is one that has reciprocal permittivity and permeability tensors. A reciprocal device is one that is made from reciprocal materials

Example of a nonreciprocal material: a biased ferrite
(This is very useful for making isolators and circulators.)

$$
\begin{aligned}
& \underline{D}=\underline{\underline{\varepsilon}} \cdot \underline{E} \\
& \underline{B}=\underline{\mu} \cdot \underline{H}
\end{aligned}
$$

$$
\left[\begin{array}{l}
D_{x} \\
D_{y} \\
D_{z}
\end{array}\right]=\left[\begin{array}{lll}
\varepsilon_{x x} & \varepsilon_{x y} & \varepsilon_{x z} \\
\varepsilon_{y x} & \varepsilon_{y y} & \varepsilon_{y z} \\
\varepsilon_{z x} & \varepsilon_{z y} & \varepsilon_{z z}
\end{array}\right]\left[\begin{array}{l}
E_{x} \\
E_{y} \\
E_{z}
\end{array}\right] \quad\left[\begin{array}{l}
B_{x} \\
B_{y} \\
B_{z}
\end{array}\right]=\left[\begin{array}{lll}
\mu_{x x} & \mu_{x y} & \mu_{x z} \\
\mu_{y x} & \mu_{y y} & \mu_{y z} \\
\mu_{z x} & \mu_{z y} & \mu_{z z}
\end{array}\right]\left[\begin{array}{l}
\mu_{x} \\
\mu_{y} \\
\mu_{z}
\end{array}\right]
$$

Reciprocal: $\varepsilon_{i j}=\varepsilon_{j i}, \mu_{i j}=\mu_{j i}$
$\left[\begin{array}{ccc}\alpha & j \gamma & 0 \\ -j \gamma & \alpha & 0\end{array}\right]$
Ferrite: $\underline{\underline{\mu}}=\mu_{0}\left[\begin{array}{ccc}-j \gamma & \alpha & 0 \\ 0 & 0 & 1\end{array}\right] \quad \underline{\underline{\mu}}$ is not symmetric!

We can show that the equivalent circuits for reciprocal 2-port networks are:

There are defined only for 2-port

 networks.$$
\left[\begin{array}{l}
V_{1} \\
I_{1}
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{l}
V_{2} \\
I_{2}^{\prime}
\end{array}\right]
$$

$$
I_{2}^{\prime}=-I_{2}
$$

$$
\begin{array}{ll}
A=\left.\frac{V_{1}}{V_{2}}\right|_{I_{2}^{\prime}=0} & C=\left.\frac{I_{1}}{V_{2}}\right|_{I_{2}^{\prime}=0} \\
B=\left.\frac{V_{1}}{I_{2}}\right|_{V_{2}=0} & D=\left.\frac{I_{1}}{I_{2}}\right|_{V_{2}=0}
\end{array}
$$

- At high frequencies, Z, Y, h \& ABCD parameters are difficult (if not impossible) to measure.
- V and I are not uniquely defined
- Even if defined, V and I are extremely difficult to measure (particularly I).
- Required open and short-circuit conditions are often difficult to achieve.
- Scattering (S) parameters are often the best representation for multi-port networks at high frequency.

S-parameters are defined

assuming transmission lines are connected to each port.

On each transmission

line:

$$
\begin{aligned}
& V_{i}\left(z_{i}\right)=V_{i 0}^{+} e^{-\gamma, z_{i}}+V_{i 0}^{-} e^{+\gamma, i_{i}}=V_{i}^{+}\left(z_{i}\right)+V_{i}^{-}\left(z_{i}\right) \\
& I_{i}\left(z_{i}\right)=\frac{V_{i}^{+}\left(z_{i}\right)}{Z_{0 i}}-\frac{V_{i}^{-}\left(z_{i}\right)}{Z_{0 i}} \quad i=1,2
\end{aligned}
$$

Incoming wave function $\equiv a_{i}\left(z_{i}\right) \equiv V_{i}^{+}\left(z_{i}\right) / \sqrt{Z_{0 i}}$ Outooing wave function $\equiv b_{\cdot}\left(z_{i}\right) \equiv V^{-}$

$$
\begin{aligned}
\Gamma_{L} & =\frac{V_{1}^{-}(0) / \sqrt{Z_{01}}}{V_{1}^{+}(0) / \sqrt{Z_{01}}} \\
& =\frac{b_{1}(0)}{a_{1}(0)}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \quad b_{1}(0) & =\Gamma_{L} a_{1}(0) \\
& =S_{11} a_{1}(0)
\end{aligned}
$$

Incoming wave function $\equiv a_{i}\left(z_{i}\right) \equiv V_{i}^{+}\left(z_{i}\right) / \sqrt{Z_{0 i}}$
Outgoing wave function $\equiv b_{i}\left(z_{i}\right) \equiv V_{i}^{-}\left(z_{i}\right) / \sqrt{Z_{0 i}}$

$$
\begin{aligned}
& b_{1}(0)=S_{11} a_{1}(0)+S_{12} a_{2}(0) \\
& b_{2}(0)=S_{21} a_{1}(0)+S_{22} a_{2}(0)
\end{aligned}
$$

Scattering

