\iint_{0}^{0} NETWORK THEORY

LECTURE 1

SECTION B

TOPIC COVERED: TERMINAL PAIRS OR PORTS

TERMINAL PAIRS OR PORTS

- Any network may be represented schematically by a rectangle or box as shown in Figure 1. A network may be used for a variety of purposes. Thus consider its use as a load connected to some other network. In order to connect it to the active network, there must be available two terminals of this passive network. Figure 1 shows a network with one pair of terminals 1 1 ? or with one port. Such a network may be called a one-port network or one terminal-pair network. When such a one-port network is connected to an energy source or an active network at its pair of terminals, the energy source provides the driving force for this one-port network and the pair of terminals constitute the driving-point of the network. One pair of terminals is known as a port.

A GENERAL CIRCUIT CAN BE REPRESENTED BY A MULTI-PORT NETWORK, WHERE THE "PORTS" ARE DEFINED AS ACCESS TERMINALS AT WHICH WW CURRENTS. are assumed on the two wires of a port.

EXAMPLES:

1) ONE-PORT NETWOR־ \square

2) N -port Network

To represent multi-port networks we use:

- Z (impedance) parameters
- Y (admittance) parameters
- h (hybrid) parameters
- $A B C D$ parameters
- S (scattering) parameters

Not easily measurable at high

Measurable at high frequency

$$
\begin{aligned}
\int_{V}-\frac{1}{2}\left(\underline{E} \cdot \underline{J}^{i^{*}}\right) d V= & \int_{S} \underline{S} \cdot \underline{\hat{n}} d S \\
& +\int_{V}\left(\frac{1}{2} \omega \varepsilon_{c}^{\prime \prime}|\underline{E}|^{2}+\frac{1}{2} \omega \mu^{\prime \prime}|\underline{H}|^{2}\right) d V \\
& +2 j \omega \int_{V}\left(\frac{1}{4} \mu^{\prime}|\underline{H}|^{2}-\frac{1}{4} \varepsilon_{c}^{\prime}|\underline{E}|^{2}\right) d V
\end{aligned}
$$

The last term is the VARS consumed by the region.

The notation < > denotes time-average.

$$
P_{s}=P_{f}+\left\langle\mathrm{P}_{d}\right\rangle+j(2 \omega)\left(\left\langle\mathrm{W}_{m}\right\rangle-\left\langle\mathrm{W}_{e}\right\rangle\right)
$$

Consider a general one-port

 network

Complex power delivered to network:

$$
P_{i n}=\frac{1}{2} \oint_{s}(\underline{E} \times \underline{H}) \cdot \underline{\hat{n}} d s=P_{d}+j 2 \omega\left(W_{m}-W_{e}\right)
$$

$$
=\frac{1}{2} V_{1} I_{1}^{*}
$$

$$
\begin{aligned}
Z_{\text {in }} & =\frac{V_{1}}{I_{1}}=\frac{V_{1} I_{1}^{*}}{\left|I_{1}\right|^{2}}=\frac{\frac{1}{2} V_{1} I_{1}^{*}}{\frac{1}{2}\left|I_{1}\right|^{2}}=\frac{P_{\text {in }}}{\frac{1}{2}\left|I_{1}\right|^{2}} \\
& =R_{\text {in }}+j X_{\text {in }}=\frac{P_{d}+j 2 \omega\left(W_{m}-W_{e}\right)}{\frac{1}{2}\left|I_{1}\right|^{2}} \\
R_{\text {in }} & =\frac{2 P_{d}}{\left|I_{1}\right|^{2}}
\end{aligned}
$$

We can show that for physically realizable networks the following apply:

$$
\begin{aligned}
& V_{1}(-\omega)=V_{1}^{*}(\omega) \\
& \quad \Rightarrow Z_{\text {in }}(-\omega)=Z_{\text {in }}^{*}(\omega) \\
& I_{1}(-\omega)=I_{1}^{*}(\omega)
\end{aligned}
$$

$\Rightarrow \quad R_{\text {in }}(\omega)$ is an even function of ω

$$
Z_{i n}(\omega)=R_{i n}(\omega)+j X_{i n}(\omega)
$$

$X_{\text {in }}(\omega)$ is an odd function of ω

Note: Frequency is usually defined as a positive quantity. However, we consider the analytic continuation of the functions into the complex frequency plane.

