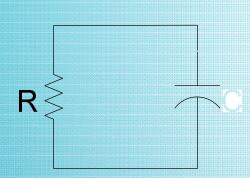
NETWORKTHEORY

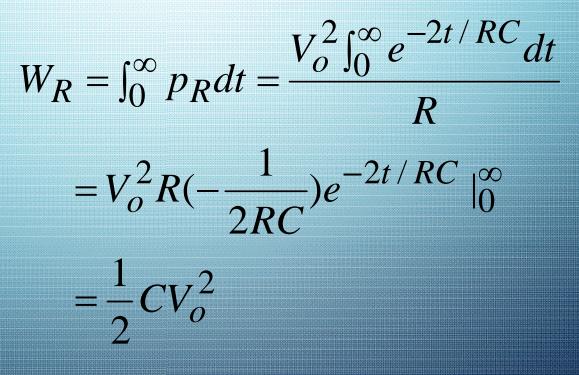

NETWORK THEORY

SECTION A

TOPIC COVERED: TRANSIENT RESPONSE OF RL TO VARIOUS EXCITATION SIGNALS

SECTION A : TRANSIENT RESPONSE

 Transient Response of RC, RL, and RLC Circuits to various excitation signals such as step, ramp, impulse and sinusoidal excitations using Laplace transform



RC CIRCUIT

Power dissipation in the resistor is:

$$p_R = V^2/R = (V_o^2/R) e^{-2 t/RC}$$

Total energy turned into heat in the resistor

RL CIRCUITS

 V_{R}

R

Initial condition $i(t=0) = I_{o}$ $v_{R} + v_{L} = 0 = Ri + L\frac{di}{dt}$ $V_{L} = \frac{L}{R}\frac{di}{dt} + i = 0$ Solving the differential equation **RL CIRCUITS**

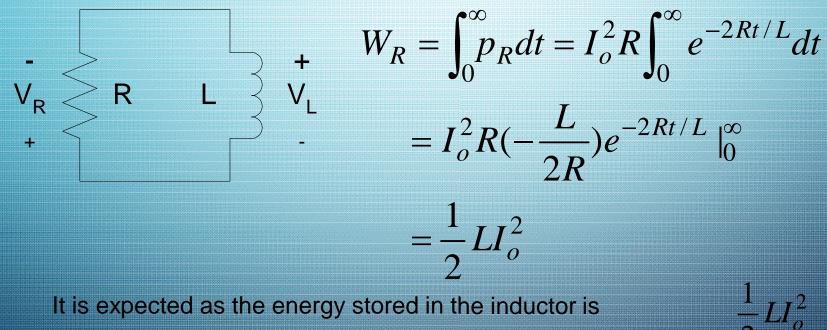
$$\frac{di}{dt} + \frac{R}{L}i = 0$$

$$\frac{di}{dt} = -\frac{R}{L}dt, \quad \int_{I_o}^{i(t)} \frac{di}{i} = \int_o^t -\frac{R}{L}dt$$

$$\frac{di}{i} = -\frac{R}{L}dt, \quad \int_{I_o}^{i(t)} \frac{di}{i} = \int_o^t -\frac{R}{L}dt$$

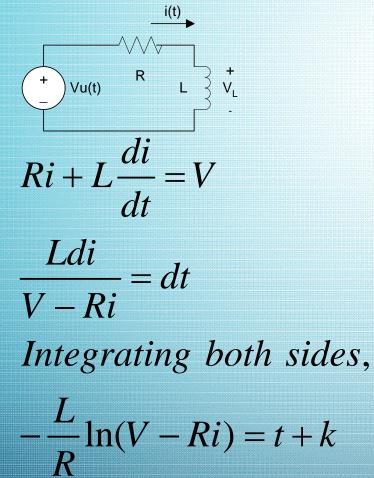
$$\frac{h}{I_o} = -\frac{R}{L}t |_o^t$$
Initial condition
$$\ln i - \ln I_o = -\frac{R}{L}t$$

$$i(t) = I_o e^{-Rt/L}$$


RL CIRCUIT

I(t)

Power dissipation in the resistor is:


$$p_{R} = i^{2}R = I_{o}^{2}e^{-2Rt/L}R$$

Total energy turned into heat in the resistor

It is expected as the energy stored in the inductor is

RL CIRCUIT

$$Vu(t)$$

$$i(0^{+}) = 0, thus \quad k = -\frac{L}{R} \ln V$$

$$-\frac{L}{R} [\ln(V - Ri) - \ln V] = t$$

$$\frac{V - Ri}{V} = e^{-Rt/L} \quad or$$

$$i = \frac{V}{R} - \frac{V}{R} e^{-Rt/L}, \text{ for } t > 0$$

where L/R is the time constant

DC STEADY STATE

The steps in determining the forced response for *RL* or *RC* circuits with dc sources are:

- 1. Replace capacitances with open circuits.
- 2. Replace inductances with short circuits.
- 3. Solve the remaining circuit.