NETWORKTHEORY

LECTURE 1

SECTION A

TOPIC COVERED : INTRODUCTION OF TRANSIENT RESPONSE

SOLUTION TO FIRST ORDER DIFFERENTIAL EQUATION

Consider the general Equation

$$\tau \frac{dx(t)}{dt} + x(t) = K_s f(t)$$

Let the initial condition be x(t = 0) = x(0), then we solve the differential equation:

$$\tau \frac{dx(t)}{dt} + x(t) = K_s f(t)$$

The complete solution consists of two parts:

- the homogeneous solution (natural solution)
- the particular solution (forced solution)

THE NATURAL RESPONSE

Consider the general Equation

$$\tau \frac{dx(t)}{dt} + x(t) = K_s f(t)$$

Setting the excitation f(t) equal to zero,

$$\tau \frac{dx_N(t)}{dt} + x_N(t) = 0 \text{ or } \frac{dx_N(t)}{dt} = -\frac{x_N(t)}{\tau}, \frac{dx_N(t)}{x_N(t)} = -\frac{dt}{\tau}$$
$$\int \frac{dx_N(t)}{x_N(t)} = \int -\frac{dt}{\tau}, \quad x_N(t) = \alpha e^{-t/\tau}$$

It is called the natural response.

THE FORCED RESPONSE

Consider the general Equation

$$\tau \frac{dx(t)}{dt} + x(t) = K_s f(t)$$

Setting the excitation f(t) equal to F, a constant for $t \ge 0$

$$\tau \frac{dx_F(t)}{dt} + x_F(t) = K_S F$$
$$x_F(t) = K_S F \text{ for } t \ge 0$$

It is called the forced response.

THE COMPLETE RESPONSE

Consider the general Equation

$$\tau \frac{dx(t)}{dt} + x(t) = K_s f(t)$$

The complete response is: • the natural response + • the forced response

Solve for
$$\alpha$$
,

for
$$t = 0$$

 $x(t = 0) = x(0) = \alpha + x(\infty)$
 $\alpha = x(0) - x(\infty)$

The Complete solution:

$$x(t) = [x(0) - x(\infty)]e^{-t/\tau} + x(\infty)$$

 $x = x_N(t) + x_F(t)$ $= \alpha e^{-t/\tau} + K_S F$ $= \alpha e^{-t/\tau} + x(\infty)$

 $[x(0) - x(\infty)]e^{-t/\tau}$ called transient response $x(\infty)$ called steady state response

Circuit with switched DC excitation

A general model of the transient analysis problem

In general, any circuit containing energy storage element

A circuit containing energy-storage elements is described by a differential equation. The $+ v_R \cdot$ differential equation describing the series RC circuit shown is l_L $\frac{di_C}{dt} + \frac{1}{RC}i_C = \frac{dv_S}{dt}$ i_{R_1} $+ v_R$ $v_S(t)$ v_L ₩₩ i_C i_R $v_{S}(t)$