LECTURE 1

SECTIONA

TOPIC COVERED :TNIRODUCHION OF TRANSIENT

RESPONSE

WHAT IS TRANSIENT RESPONSE

(a) Transient DC voltage

(b) Transient sinusoidal voltage

SOLUTION TO FIRST ORDER DIFFERENTIAL EQUATION

Consider the general Equation

$$
\tau \frac{d x(t)}{d t}+x(t)=K_{s} f(t)
$$

Let the initial condition be $x(t=0)=x(0)$, then we solve the differential equation:

$$
\tau \frac{d x(t)}{d t}+x(t)=K_{s} f(t)
$$

The complete solution consists of two parts:

- the homogeneous solution (natural solution)
- the particular solution (forced solution)

THE NATURAL RESPONSE

Consider the general Equation

$$
\tau \frac{d x(t)}{d t}+x(t)=K_{s} f(t)
$$

Setting the excitation $f(t)$ equal to zero,

$$
\begin{aligned}
& \tau \frac{d x_{N}(t)}{d t}+x_{N}(t)=0 \text { or } \frac{d x_{N}(t)}{d t}=-\frac{x_{N}(t)}{\tau}, \frac{d x_{N}(t)}{x_{N}(t)}=-\frac{d t}{\tau} \\
& \int \frac{d x_{N}(t)}{x_{N}(t)}=\int-\frac{d t}{\tau}, \quad x_{N}(t)=\alpha e^{-t / \tau}
\end{aligned}
$$

It is called the natural response.

THE FORCED RESPONSE

Consider the general Equation

$$
\tau \frac{d x(t)}{d t}+x(t)=K_{s} f(t)
$$

Setting the excitation $f(t)$ equal to F, a constant for $t \geq 0$

$$
\begin{aligned}
& \tau \frac{d x_{F}(t)}{d t}+x_{F}(t)=K_{S} F \\
& x_{F}(t)=K_{S} F \text { for } t \geq 0
\end{aligned}
$$

It is called the forced response.

THE COMPLETE RESPONSE

Consider the general Equation
$\tau \frac{d x(t)}{d t}+x(t)=K_{s} f(t)$
The complete response is:

- the natural response + - the forced response

Solve for α,

$$
\begin{aligned}
& \text { for } t=0 \\
& x(t=0)=x(0)=\alpha+x(\infty) \\
& \alpha=x(0)-x(\infty)
\end{aligned}
$$

The Complete solution:

$$
x(t)=[x(0)-x(\infty)] e^{-t / \tau}+x(\infty)
$$

$$
\begin{aligned}
x & =x_{N}(t)+x_{F}(t) \\
& =\alpha e^{-t / \tau}+K_{S} F \\
& =\alpha e^{-t / \tau}+x(\infty)
\end{aligned}
$$

$$
=\alpha e^{-t / \tau}+K_{S} F \quad[x(0)-x(\infty)] e^{-t / \tau} \text { called transient response }
$$

$$
x(\infty) \text { called steady state response }
$$

Circuit with switched DC excitation

In general, any circuit containing energy storage element

A circuit containing energy-storage elements is described by a differential equation. The differential equation describing the series $R C$ circuit shown is

