DISCRETE STRUCTURE

Lecture-29

Binary Tree \&its traversal

Topics covered

\square Introduction to Binary tree
\square Full binary tree
\square Binary search tree

Introduction to Binary trees

A binary tree is a tree where each vertex has zero, one or two children

Full binary tree

A full binary tree is a binary tree in which each vertex has two or no children.

Full binary tree

Theorem: If T is a full binary tree with k internal vertices, then
\square T has $\mathrm{k}+1$ terminal vertices and
athe total number of vertices is $2 k+1$.

- Example: there are $\mathrm{k}=4$ internal vertices (a, b, c and f) and 5 terminal vertices (d, e, g, h and i) for a total of 9 vertices.

Height and terminal vertices

- Theorem: If a binary tree of height h has t terminal vertices, then $\lg t \leq h$, where Ig is logarithm base 2.

Equivalently, $\mathrm{t} \leq 2^{h}$.

- Example, $h=4$ and $t=7$. Then: $t=7<16=2^{4}=2^{h}$

A case of equality

- If all t terminal vertices of a full binary tree T have the same level $h=$ height of T , then

$$
t=2^{h} .
$$

- Example:
- The height is $h=3$,
- and the number of terminal vertices is $t=8$
- $t=8=2^{3}=2^{h}$

Alphabetical order

Alphabetical or lexicographic order is the order of the dictionary:
a) start with an ordered set of symbols $X=$ $\{a, b, c, \ldots\}$. X can be infinite or finite.
b) Let $\alpha=x_{1} x_{2} \ldots x_{m}$ and $\beta=y_{1} y_{2} \ldots y_{n}$ be strings over X. Then define $\alpha<\beta$ if
$x_{1}<y_{1}$
or if $x_{j}=y_{j}$ for all $j, 1 \leq j \leq k$, for some k such that $1 \leq k \leq$ $\min \{m, n\}$ and $x_{j+1}<y_{j+1}$
o or if $m \leq n$ and $x_{j}=y_{j}$ for all $j, 1 \leq j \leq m$

Example of alphabetical order

- Let $X=$ set of letters of the alphabet ordered according to precedence, i.e.

$$
a<b<c<\ldots<x<y<z
$$

- Let $\alpha=$ arboreal and $\beta=$ arbiter.
- In this case,

```
o }\mp@subsup{x}{1}{}=\mp@subsup{y}{1}{}=a\mathrm{ ,
- }\mp@subsup{x}{2}{}=\mp@subsup{y}{2}{\prime}=
- }\mp@subsup{x}{3}{}=\mp@subsup{y}{3}{}=b\mathrm{ .
```

- So, we go the fourth letter: $\mathrm{x}_{4}=0$ and $\mathrm{y}_{4}=\mathrm{i}$.
- Since $\mathrm{i}<0$ we have that $\beta<\alpha$.

Binary search trees

- Data are associated to each vertex
- Order data alphabetically, so that for each vertex v, data to the left of v are less than data in v
- and data to the right of v are greater than data in v
- Example: "Computers are an important technological tool"

7.6 Tree Traversals

- 1: Pre-order traversal

- 2: In-order traversal

Tree traversals

- 3: Post-order traversal

Assignment

Q.1) What is binary tree?
Q.2) What is mean by tree traversal?
Q.3)Give pre-oder \& post order traversal of a given tree

Application \& Scope of research

- Application

1. Tree structure is used to organize information in database systems. The trees represent the syntactic structure of source programs in compilers. They are used in the analysis of electrical circuits, representation of mathematical formulae and file directory system. Parsing by compilers also use tree structure.

- Scope of research

1. Bluetooth sensing technology
