DISCRETE STRUCTURE

Lecture-28

Introduction to Tree \& Spanning tree

Topics covered

\square Introduction to tree
\square Spanning tree

- Prim's algorithm
\square Kruskal's algorithm

Introduction

A (free) tree T is
n A simple graph such that for every pair of vertices v and w
n there is a unique path from v to w

Rooted tree

Level of a vertex and tree height

Let T be a rooted tree:
The level $l(v)$ of a vertex \mathbf{v} is the length of the simple path from \mathbf{v} to the root of the tree The height h of a rooted tree T is the maximum of all level numbers of its vertices:

$$
h=\max _{v \in \mathrm{~V}(\mathrm{~T})}\{I(v)\}
$$

Example:

- the tree on the right has height 3

Organizational charts

Huffman codes

On the left tree the word rate is encoded 001000011100
n On the right tree, the same word rate is encoded 1100000110

Tree Terminology

n Parent
n Ancestor
n Child
n Descendant
n Siblings
n Terminal vertices

n Internal vertices
n Subtrees

Internal and external vertices

n An internal vertex is a vertex that has at least one child
n A terminal vertex is a vertex that has no children
n The tree in the example has 4 internal vertices and 4 terminal vertices

Subtrees

A subtree of a tree T is a tree T ' such that $n \mathrm{~V}\left(\mathrm{~T}^{\prime}\right) \subseteq \mathrm{V}(\mathrm{T})$

Characterization of trees

Theorem

If T is a graph with n vertices, the following are equivalent:
a) T is a tree
b) T is connected and acyclic

- ("acyclic" = having no cycles)
c) T is connected and has $n-1$ edges
d) T is acyclic and has $n-1$ edges

Spanning trees

Given a graph G, a tree T is

 a spanning tree of G if: T is a subgraph of G and
n T contains all the vertices of G

Spanning tree search

Breadth-first search
method
Depth-first search
method
(backtracking)

Minimal spanning trees

Given a weighted graph G, a minimum spanning t is
n a spanning tree of G
n that has minimum "weight"

1. Prim's algorithm

Step 0: Pick any vertex as a starting vertex (call it a). $\mathrm{T}=\{\mathrm{a}\}$. Step 1: Find the edge with smallest weight incident to a. Add it to T Also include in T the next vertex and call it b.
Step 2: Find the edge of smallest weight incident to either a or b. Include in T that edge and the next incident vertex. Call that vertex c.
n Step 3: Repeat Step 2, choosing the edge of smallest weight that does not form a cycle until all vertices are in T. The resulting subgraph T is a minimum spanning tree.

2. Kruskal's algorithm

Step 1: Find the edge in the graph with smallest weight (if there is more than one, pick one at random). Mark it with any given color, say red.
Step 2: Find the next edge in the graph with smallest weight that doesn't close a cycle. Color that edge and the next incident vertex.
\square Step 3: Repeat Step 2 until you reach out to every vertex of the graph. The chosen edges form the desired minimum spanning tree.

Application \& Scope of research

Application
Representing hierarchical data
Representing sorted list of data of data
3. As a workflow for composing digital images for visual effects
Routing algorithm algorithms
Game
Scope of research: Network

