DISCRETE STRUCTURE

Lecture-27

Introduction to Planar Graphs

Topics covered

Introduction to Planar graph \square Application

Introduction to Planar Graphs

Def1: A graph (or multigraph) G is called planar if G can be drawn in the plane with its edges intersecting only at vertices of G. Such a drawing of G is called an embedding of G in the plane.

Ex. K3 \& k4 are planar, K_{n} for $n>4$ are nonplanar.

Planar Graphs

Def. 2 bipartite graph and complete bipartite graphs ($K_{m, n}$)

$$
K_{4,4}
$$

$K_{3,3}$ is not planar.

Therefore, any graph containing \boldsymbol{K}_{5} or $K_{4,4}$ is nonplanar.

11.4 Planar Graphs

Def. 3 elementary subdivision (homeomorphic operation)

G_{1} and G_{2} are called homeomorphic if they are isomorphic or if they can both be obtained from the same loop-free undirected graph H by a sequence of elementary subdivisions.

Two homeomorphic graphs are simultaneously planar or nonplanar.

Planar Graphs

Theorem 1 (Kuratowski's Theorem) A graph is planar if and only if it contains a subgraph that is homeomorphic to either K_{5} or $K_{3,3}$.

Ex. 1Petersen graph
a subgraph homeomorphic to $K_{3,3}$

Petersen graph is nonplanar.

11.4 Planar Graphs

A planar graph divides the plane into several regions (faces), one of them is the infinite region.

$$
v=4, e=6, r=4, v-e+r=2
$$

Theorem 1 (Euler's planar graph theorem)
For a connected planar graph or multigraph:

Planar Graphs

proof: The proof is by induction on e.
$e=0$ or 1

- $\begin{aligned} & v=1 \\ & r=1 \\ & e=0\end{aligned}$

$v=1$
$r=2$
$e=1$

Assume that the result is true for any connected planar graph or multigraph with e edges, where $0 \leq e \leq k$

Now for $G=(V, E)$ with $|E|=k+1$ edges, let $H=G-(a, b)$ for $a, \mathrm{~b}$ in V.
Since H has k edges, $v_{H}-e_{H}+r_{H}=2$
And, $v_{G}=v_{H}, e_{G}=e_{H}-1$.
Now consider the situation about regions.

Planar Graphs

case 1 : H is connected

$\therefore v_{G}-e_{G}+r_{G}=v_{H}-\left(e_{H}+1\right)+\left(r_{H}+1\right)=v_{H}-e_{H}+r_{H}=2$

Planar Graphs

case 2: H is disconnected

And by the induction hypothesis, $v_{H_{1}}-e_{H_{1}}+r_{H_{1}}=2$,
$v_{H_{2}}-e_{H_{2}}+r_{H_{2}}=2$. Therefore, $v_{G}-e_{G}+r_{G}=\left(v_{H_{1}}+v_{H_{2}}\right)$
$-\left(e_{H_{1}}+e_{H_{2}}+1\right)+\left(r_{H_{1}}+r_{H_{2}}-1\right)=\left(v_{H_{1}}-e_{H_{1}}+r_{H_{1}}\right)+$
$\left(v_{H_{2}}-e_{H_{2}}+r_{H_{2}}\right)-2=2+2-2=2$

Planar Graphs

degree of a region $(\operatorname{deg}(R))$: the number of edges traversed in a shortest closed walk about the boundary of R.

$\operatorname{deg}\left(R_{1}\right)=5, \operatorname{deg}\left(R_{2}\right)=3$
$\operatorname{deg}\left(R_{3}\right)=3, \operatorname{deg}\left(R_{4}\right)=7$
$\operatorname{deg}\left(R_{5}\right)=4, \operatorname{deg}\left(R_{6}\right)=3$
$\operatorname{deg}\left(R_{7}\right)=5, \operatorname{deg}\left(R_{8}\right)=6$
abghgfda
$\sum_{i=1}^{4} \operatorname{deg}\left(R_{i}\right)=18=\sum_{i=5}^{8} \operatorname{deg}\left(R_{i}\right)=2 \times 9=2|E|$

Planar Graphs

Corollary 1Let $G=(V, E)$ be a loop - free connected planar graph with $|V|=v,|E|=e>2$, and r regions. Then $3 r \leq 2 e$ and $e \leq 3 v-6$.
Proof : Since G is a loop - free and is not a multigraph, the boundary of each region (including the infinite region) contains at least thre e edges. Hence, each region has degree ≥ 3.
Consequent ly, $2 e=2|E|=$ the sum of the degrees of the r regions determined by G and $2 e \geq 3 r$. From Euler' s theorem,
$2=v-e+r \leq v-e+\frac{2 e}{3}=v-\frac{e}{3}$, so $6 \leq 3 v-e$, or $e \leq 3 v-6$.

Only a necessary condition, not sufficient.

Planar Graphs

Ex. 3 For $K_{5}, e=10, v=5,3 v-6=9<10=e$. Therefore, by Corollary $11.3, K_{5}$ is nonplanar.

Ex. 4 For $K_{3,3}$, each region has at least 4 edges, hence $4 r \leq 2 e$. If $K_{3,3}$ is planar, $r=e-v+2=9-6+2=5$. So $20=4 r \leq 2 e=18$, a contradiction.

Planar Graphs

An edge in G corresponds with an edge in G^{d}.
It is possible to have isomorphic graphs with respective duals that are not isomorphic.
cut-set: a subset of edges whose removal increase the number of components

Ex. 5

$$
\begin{aligned}
& \text { cut-sets: }\{(\mathrm{a}, \mathrm{~b}),(\mathrm{a}, \mathrm{c})\}, \\
& \{(\mathrm{b}, \mathrm{~d}),(\mathrm{c}, \mathrm{~d})\},\{(\mathrm{d}, \mathrm{f})\}, \ldots
\end{aligned}
$$

For planar graphs, cycles in one graph correspond to cut-sets in a dual graphs and vice versa.

Application \& scope of research of Planar Graphs

applications: VLSI routing, plumbing, graph coloring,...
Scope of research : Fast planning through planning graph analysis, Artificial intelligence

