DISCRETE STRUCTURE

Lecture-25

Euler path \& circuit

Topics covered

Introduction to Euler path and circuit \square Euler trails

Introduction to Euler path \& circuit

An pictorial way to motivate the graph theoretic concepts of Eulerian and Hamiltonian paths and circuits is with two puzzles:

- The pencil drawing problem
- The taxicab problem

Euler Paths and Circuits Definition

DEF: An Euler path in a graph G is a simple path containing every edge in G. An Euler circuit (or Euler cycle) is a cycle which is an Euler path.
NOTE: The definition applies both to undirected as well as directed graphs of all types.

Vertex Degree: Euler Trails and Circuits

degree 1 vertex: pendant vertex
Theorem $1 \quad$ For simple graphs, $\sum_{v_{i} \in V} \operatorname{deg}\left(v_{i}\right)=2|E|$
Corollary 1 The number of vertices of odd degree must be even.
Ex. 1 a regular graph: each vertex has the same degree Is it possible to have a 4-regular graph with 10 edges?

$$
2|E|=4|V|=20,|V|=5 \longrightarrow \operatorname{possible}\left(K_{5}\right)
$$

with 15 edges?

$$
2|E|=4|V|=30 \longrightarrow \text { not possible }
$$

Vertex Degree: Euler Trails and Circuits

Ex. 2 The Seven Bridge of Konigsberg

Find a way to walk about the city so as to cross each bridge exactly once and then return to the starting point.

Vertex Degree: Euler Trails and Circuits

Def. 1 Let $G=(V, E)$ be an undirected graph or multigraph with no isolated vertices. Then G is said to have an Euler circuit if there is a circuit in G that traverses every edge of the graph exactly once. If there is an open trail from a to b in G and this trail traverses each edge in G exactly once, the trail is called an Euler trail.
Theorem 2 Let $G=(V, E)$ be an undirected graph or multigraph with no isolated vertices. Then G has an Euler circuit if and only if G is connected and every vertex in G has even degree.

All degrees are odd. Hence no Euler circuit for the Konigsberg bridges problem.

Vertex Degree: Euler Trails and Circuits

proof of Euler circuit theorem:
Euler circult \longrightarrow connected and even degree

for starting vertex
$\longrightarrow v \longrightarrow$ for other vertices
connected and even degree \longrightarrow Euler circuit
by induction on the number of edges.

$e=n \quad$ find any circuit containing s

Vertex Degree: Euler Trails and Circuits

Can you think of an algorithm to construct an Euler circuit?

Corollary 2 An Euler trail exists in G if and only if G is connected and has exactly two vertices of odd degree.
two odd degree vertices

Theorem 2 A directed Euler circuit exists in G if and only if
G is connected and in-degree $(v)=o u t-d e g r e e(v)$ for all vertices v.

one in, one out

Vertex Degree: Euler Trails and Circuits

Ex. 3 Complete Cycles (DeBruijn Sequences)
If n is a positive integer and $N=2^{n}$, a cycle of length N of 0 's and 1's is called a complete cycle if all possible subsequences of 0's and 1's of length n appear in this cycle.

$$
\begin{array}{ll}
n=1 & 01, \\
n=2 & 0011, \\
n=3 & 00010111,00011101 \\
n=4 & 16 \text { complete cycles } \\
\text { In general } \quad 2^{2^{n-1}-n}
\end{array}
$$

vertex set=\{00,01,10,11\}
a directed edge from $x_{1} x_{2}$ to $x_{2} x_{3}$
Find an Euler circuit:
abcdefgh $\longrightarrow 00111010$
abgfcdeh $\longrightarrow 00101110$

Application \& Scope of research of Euler circuit

Application :Euler circuits and paths are also useful to painters, garbage collectors, airplane pilots and all world navigators, like

Scope of research : Euler circuits with no monochromatic transitions in edge colored graph

Euler Formula

Euler proved that for any connected graph
$\mathrm{f}=$ no. of faces
$\mathrm{e}=$ no. of edges
$\mathrm{v}=$ no. of vertices
Then the formula hold
$\mathrm{f}=\mathrm{e}-\mathrm{v}-2$

