DISCRETE STRUCTURE

Lecture-24

Weighted graph\& Shortest path in Weighted

Topics covered

I Introduction to Weighted Graphs
\square Shortest path in weighted graphs

Introduction to Weighted Graphs

- In a weighted graph, each edge has an associated numerical value, called the weight of the edge
- Edge weights may represent, distances, costs, etc.
- Example:
- In a flight route graph, the weight of an edge represents the distance in miles between the endpoint airports

Shortest Path Problem

Given a weighted graph and two vertices u and v, we want to find a path of minimum total weight between \boldsymbol{u} and \boldsymbol{v}.

- Length of a path is the sum of the weights of its edges.

Example:

- Shortest path between Providence and Honolulu

HNL

Weighted Graphs

- A weighted graph is a graph in which each edge (u, v) has a weight $w(u, v)$. Each weight is a real number.
- Weights can represent distance, cost, time, capacity, etc.
- The length of a path in a weighted graph is the sum of the weights on the edges.
- Dijkstra's Algorithm finds the shortest path between two vertices.

Shortest Path Properties

Property 1 :
A subpath of a shortest path is itself a shortest path
Property 2 :
There is a tree of shortest paths from a start vertex to all the other vertices
Example:
Tree of shortest paths from Providence

Dijkstra's Algorithm

- The distance of a vertex \boldsymbol{v} from a vertex s is the length of a shortest path between s and v
Dijkstra's algorithm computes the distances of all the vertices from a given start vertex s
Assumptions:
- the graph is connected
- the edges are undirected
- the edge weights are nonnegative

Dijkstra's Shortest Path Algorithm

- Due to Edsger W. Dijkstra (1959, when 29).

Assign scores to verticies:
$-S(v)=$ score of vertex v (some integer)

- there are temporary and permanent scores
- all verticies start with a temporary score of infinity (Inf)

Example of Dijkstra"s Algorithm

Find shortest-path from A to D:
Label each adjacent node

(a)
 with distance to A.

(c)

(e)

(d)

Application \& Scope of research

Application

- Internet packet routing
- Flight reservations
- Driving directions

Scope of research

- To find shortest path from source to destination in a given network s.t. it has minimum cost

