DISCRETE STRUCTURE

Lecture-22

Introduction to Graph

Topics covered

Introduction to Graphs
\square Directed Graphs
\square Undirected Graphs

Introduction to graph

- A graph, G, consists of two sets, V and E.
- V is a finite, nonempty set of vertices.
- E is set of pairs of vertices called edges.
- The vertices of a graph G can be represented as V(G).
- Likewise, the edges of a graph, G, can be represented as E(G).

Basic Definitions

- A graph can be described either by the use of
\times Sets or
× a diagram.
- The diagram can be drawn differently and still represents the same graph.
- Example:
* Sets: A graph with vertices $V=\{A, B, C, D\}$ and edges $E=\{\{A, B\}$, $\{B, C\},\{C, D\}\}$.

Basic Definitions

- Adjacent, incident, and degree:
- Two vertices u and v in V are adjacent or neighbors if there is an edge e between u and v.
- The edge $e=\{u, v\}$ joins (or connects/links) the vertices u and v.
- The vertices u and v are endpoints of e.
\times The edge e is incident with the vertex u and v.
- The degree of u, denoted deg(u), is the number of edges incident with a vertex u.

9.1. Basic Definitions

- Example:

- Vertices A and B are adjacent.
- Vertices A and D are not because there is no edge between them.
$-\operatorname{deg}(\mathrm{A})=1$
- $\operatorname{deg}(B)=3$
$-\operatorname{deg}(C)=0, C$ is called isolated.

Directed \& undirected Graph

For simple graphs, $\quad \sum \operatorname{deg}\left(v_{i}\right)=2|E|$

Multigraph

For any graph $G=(V, E)$, the number of components of G is denoted by $\kappa(G)$.

$$
1 \leq \kappa(G) \leq|V|
$$

Can you think of an algorithm to determine $\kappa(G)$?
multigraphs

multigraph of multiplicity 3

Subgraphs

- A subgraph of $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- Is a graph $\mathrm{H}=(\mathrm{W}, \mathrm{F})$ where $\mathrm{W} \subseteq \mathrm{V}$ and $\mathrm{F} \subseteq \mathrm{E}$.
- Examples:
${ }^{*} \mathrm{~K}_{5}$ and its subgraph:

Application \& Scope of Research of Graph

-Graphs are applied widely in our days. They are used
in economy, aeronautics, physics, biology. Analysis of electrical circuits
-Finding shortest routes
-Project planning
-Identification of chemical compounds
-Statistical mechanics

- Genertics
-Cybernetics
-Linguistics
Social Sciences, and so on Scope of research is construct a network,Game

