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NNORMALORMAL SSUBGROUPSUBGROUPS

Let H,  be a subgroup of G,  . Then H, 

is a normal subgroup if, for any a G , the left
coset a H is equal to the right coset H  a

      
      
      
      
      
      
      

H,  is a normal subgroup where H =  , , 
e.g.   H =   ,  ,     , , 
H       ,  ,      , , 

Theorem: In an Abelian group, every subgroup
is a normal subgroup



CYCLIC GROUP

A group G is called cyclic if there 
exists  an element g in G such 
that G = ⟨g⟩ = { gn | n is an integer }. 
Since any group generated by an 
element in a group is a subgroup of 
that group, showing that the 
only subgroup of a group G that 
contains g is G itself suffices to show 
that G is cyclic.



EXAMPLE OF CYCLIC GROUP

For example, if G = 
{ g0, g1, g2, g3, g4, g5 } is a 
group, then g6 = g0, and G is 
cyclic. In fact, G is essentially 
the same as (that 
is, isomorphic to) the set { 0, 1, 
2, 3, 4, 5 } with addition modulo 
66. For example, 1 + 2 ≡ 3 (mod 
6) corresponds to g1·g2 = g3, 
and 2 + 5 ≡ 1 (mod 6) 
corresponds to g2·g5= g7 = g1, 
and so on. One can use the 
isomorphism χ defined by χ(gi) 
= i.



CYCLIC GROUP

 For every positive integer n there is exactly 
one cyclic group (up to isomorphism) 
whose order is n, and there is exactly one 
infinite cyclic group (the integers under 
addition). Hence, the cyclic groups are the 
simplest groups and they are completely 
classified.

 The name "cyclic" may be misleading: it is 
possible to generate infinitely many 
elements and not form any literal cycles; 
that is, every gn is distinct. (It can be said 
that it has one infinitely long cycle.) A group 
generated in this way is called an infinite 
cyclic group, and is isomorphic to the 
additive group of integer Z.



CYCLIC GROUP

 Furthermore, the circle group (whose 
elements are uncountable) is not a cyclic 
group—a cyclic group always 
has countable elements.

 Since the cyclic groups are abelians, they are 
often written additively and denoted Zn. 
However, this notation can be problematic 
for number theroitists The 
quotient notations Z/nZ, Z/n, and Z/(n) are 
standard alternatives. We adopt the first of 
these here to avoid the collision of notation. 

 One may write the group multiplicatively, and 
denote it by Cn, where n is the order (which 
can be ∞). For example, g2g4 = g1 in C5, 
whereas 2 + 4 = 1 in Z/5Z.

 Properties



IINTEGRALNTEGRAL DDOMAINSOMAINS ANDAND FFIELDSIELDS

A, , is an integral domain if it is a commutative
ring with unity that also satisfies the following
property;

x, y A x  y = 0  x = 0 or y = 0

Z, +, is also an integral domain

A, , is a field if:
(1) A, is an Abelian group
(2) A - 0 , is an Abelian group
(3) The operation  is distributive over the 

operation 

Example:The set of real numbers with respect to
+ and     is a field. 

Z, +, is not a field. Why?



A FA FIELDIELD ISIS ANAN IINTEGRALNTEGRAL DDOMAINOMAIN

Let A, , be a field then certainly A, ,
is a commutative ring with unity. Hence, it only
remains to prove that

x, y A x  y = 0  x = 0 or y = 0

Now suppose x  y = 0 then if x=0 the above 
holds. Consider the case then where x  0

Since A - 0 , is an Abelian group then it
must contain an inverse to x, x -1 , for which the
following holds

y = 1 y = x -1  x  y  x -1  x  y   x -1  0

Now
a  0 0   a  0
 a  0 a  0 = a 0 (distributivity)

 a  0 a  0 = a 0 0 0 is identity 
 a  0 = 0 cancellation laws for  

Therefore y=0 as required



PPROPERTIESROPERTIES

Theorem: if A, , is a ring. Then
x A 0  x = x  0 = 0

Proof: as for previous argument

Let -x denote the inverse of x under 

Theorem: if A, , is a ring then the following
hold
(i) -x   y = x  -y   - x  y 
(ii) -x  -y   x  y

Proof: (i)

x -x  y = 0  y (additive inverse)
 0 (by above theorem)

 x  y -x  y = 0 (distributivity)

 -x  y = - x y  0 (division laws for )

= - x  y  (additive identity)



(ii) -x  -y    x  -y   (part(i))

= - - x  y    (part(i))

= x  y (double inverse)

for both (i) and (ii) the symmetric cases are
proved similarly

Theorem: suppose that elements a,b and c of
an integer domain satisfy                      anda  b = a  c a  0
then b=c.
Proof:

a  b - a c  a c  - a  c  0 (additive inverse)

Now - a c   a  -c  (prev. theorem)
a  b c   0 (distributivity)

 b c   0 
by defn. of integer domain 
since a  0 


 



 b = 0 - -c   (by devision law for )

 b = c double inverse 



APPLICATION & SCOPE OF
RESEARCH

 Coding Theory
 Cryptography


